from langchain.document_loaders.unstructured import UnstructuredFileLoader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.chains import RetrievalQA from langchain.chat_models import ChatOpenAI from langchain.schema import AIMessage, HumanMessage, SystemMessage, Document from transformers import AutoTokenizer, T5ForConditionalGeneration from retrieval.retrieval import Retrieval, BM25 import os, time class Agent: def __init__(self, args=None) -> None: self.args = args self.corpus = Retrieval() self.choices = args.choices self.context_value = "" self.use_context = False print("Model is loading...") self.model = T5ForConditionalGeneration.from_pretrained(args.model).to(args.device) self.tokenizer = AutoTokenizer.from_pretrained(args.tokenizer) print("Model loaded!") def load_context(self, doc_path): loader = UnstructuredFileLoader(doc_path.name) print('Loading file:', doc_path.name) context = loader.load()[0].page_content self.retrieval = Retrieval(docs=context) self.choices = self.retrieval.k self.use_context = True return f"Using file from {doc_path.name}" def asking(self, question): s_query = time.time() if self.use_context: print("Answering with your context") contexts = self.retrieval.get_context(question) else: print("Answering without your context") contexts = self.corpus.get_context(question) prompts = [] for context in contexts: prompt = f"Trả lời câu hỏi: {question} Trong nội dung: {context['context']}" prompts.append(prompt) s_token = time.time() tokens = self.tokenizer(prompts, max_length=self.args.seq_len, truncation=True, padding='max_length', return_tensors='pt') s_gen = time.time() outputs = self.model.generate( input_ids=tokens.input_ids.to(self.args.device), attention_mask=tokens.attention_mask.to(self.args.device), max_new_tokens=self.args.out_len ) s_de = time.time() answers = [] for output in outputs: sequence = self.tokenizer.decode(output, skip_special_tokens=True) answers.append(sequence) self.temp = contexts t_mess = "t_query: {:.2f}\t t_token: {:.2f}\t t_gen: {:.2f}\t t_decode: {:.2f}\t".format( s_token-s_query, s_gen-s_token, s_de-s_gen, time.time()-s_de ) print(t_mess) return answers, contexts def get_context(self, context): self.context_value = context self.retrieval = Retrieval(docs=context) self.choices = self.retrieval.k self.use_context = True return context def load_context_file(self, file): print('Loading file:', file.name) text = '' for line in open(file.name, 'r', encoding='utf8'): text += line self.context_value = text return text def clear_context(self): self.context_value = "" self.use_context = False self.choices = self.args.choices return ""