FROM nvidia/cuda:12.0.0-cudnn8-devel-ubuntu22.04 # Set environment variables ENV PATH="/usr/local/cuda/bin:$PATH" ENV MODEL_NAME="falcon-40b-instruct-GGML" ENV MODEL_FILE="falcon40b-instruct.ggmlv3.q4_K_S.bin" ENV MODEL_URL="https://huggingface.co/TheBloke/${MODEL_NAME}/raw/ggmlv3/${MODEL_FILE}" RUN apt update && \ apt install --no-install-recommends -y build-essential python3 python3-pip wget curl git && \ apt clean && rm -rf /var/lib/apt/lists/* # Set the working directory in the container to /app WORKDIR /app # Install cmake RUN apt-get install -y wget && \ wget -qO- "https://cmake.org/files/v3.18/cmake-3.18.0-Linux-x86_64.tar.gz" | tar --strip-components=1 -xz -C /usr/local # Copy the requirements.txt file into the container COPY requirements.txt ./ # Install any needed packages specified in requirements.txt RUN pip3 install --upgrade pip && \ pip3 install -r requirements.txt # Clone ctransformers and update submodule ggllm.cpp RUN git clone --recursive https://github.com/marella/ctransformers.git && \ cd ctransformers && \ git submodule update --init models/submodules/ggllm.cpp && \ cd models/submodules/ggllm.cpp && \ git checkout master && \ git pull # Install ctransformers from source RUN cd ctransformers && \ CT_CUBLAS=1 FORCE_CMAKE=1 pip install . # Download the model file # RUN wget -O /app/${MODEL_FILE} ${MODEL_URL} # Create user RUN useradd -m -u 1000 user # Create a directory for app and move the downloaded file there # RUN mkdir -p /home/user/app && mv /app/${MODEL_FILE} /home/user/app # Change the ownership of the copied file to user # RUN chown user:user /home/user/app/${MODEL_FILE} USER user ENV HOME=/home/user \ PATH=/home/user/.local/bin:$PATH WORKDIR $HOME/app # Now you can COPY the rest of your app COPY --chown=user . . RUN ls -al # Make port available to the world outside this container EXPOSE 7860 # Run uvicorn when the container launches CMD ["python3", "demo.py", "--host", "0.0.0.0", "--port", "7860"]