import gradio as gr import copy import random import os import requests import time import sys os.system("pip install --upgrade pip") os.system('''CMAKE_ARGS="-DLLAMA_AVX512=ON -DLLAMA_AVX512_VBMI=ON -DLLAMA_AVX512_VNNI=ON -DLLAMA_AVX_VNNI=ON -DLLAMA_FP16_VA=ON -DLLAMA_WASM_SIMD=ON" pip install llama-cpp-python''') from huggingface_hub import snapshot_download from llama_cpp import Llama SYSTEM_PROMPT = '''You are a helpful, respectful and honest INTP-T AI Assistant named "Shi-Ci" in English or "兮辞" in Chinese. You are good at speaking English and Chinese. You are talking to a human User. If the question is meaningless, please explain the reason and don't share false information. You are based on SLIDE model, trained by "SSFW NLPark" team, not related to GPT, LLaMA, Meta, Mistral or OpenAI. Let's work this out in a step by step way to be sure we have the right answer.\n''' SYSTEM_TOKEN = 384 USER_TOKEN = 2048 BOT_TOKEN = 3072 LINEBREAK_TOKEN = 64 ROLE_TOKENS = { "User": USER_TOKEN, "Assistant": BOT_TOKEN, "system": SYSTEM_TOKEN } def get_message_tokens(model, role, content): message_tokens = model.tokenize(content.encode("utf-8")) message_tokens.insert(1, ROLE_TOKENS[role]) message_tokens.insert(2, LINEBREAK_TOKEN) message_tokens.append(model.token_eos()) return message_tokens def get_system_tokens(model): system_message = {"role": "system", "content": SYSTEM_PROMPT} return get_message_tokens(model, **system_message) repo_name = "Cran-May/SLIDE-v2-Q4_K_M-GGUF" model_name = "slide-v2.Q4_K_M.gguf" snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name) model = Llama( model_path=model_name, n_ctx=4000, n_parts=1, ) max_new_tokens = 2500 def User(message, history): new_history = history + [[message, None]] return "", new_history def Assistant( history, system_prompt, top_p, top_k, temp ): tokens = get_system_tokens(model)[:] tokens.append(LINEBREAK_TOKEN) for User_message, Assistant_message in history[:-1]: message_tokens = get_message_tokens(model=model, role="User", content=User_message) tokens.extend(message_tokens) if bot_message: message_tokens = get_message_tokens(model=model, role="Assistant", content=Assistant_message) tokens.extend(message_tokens) last_user_message = history[-1][0] message_tokens = get_message_tokens(model=model, role="User", content=last_user_message,) tokens.extend(message_tokens) role_tokens = [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN] tokens.extend(role_tokens) generator = model.generate( tokens, top_k=top_k, top_p=top_p, temp=temp ) partial_text = "" for i, token in enumerate(generator): if token == model.token_eos() or (max_new_tokens is not None and i >= max_new_tokens): break partial_text += model.detokenize([token]).decode("utf-8", "ignore") history[-1][1] = partial_text yield history with gr.Blocks( theme=gr.themes.Soft() ) as demo: gr.Markdown(f"""