import gradio as gr import copy import random import os import requests import time import sys os.system("pip install --upgrade pip") os.system('''CMAKE_ARGS="-DLLAMA_AVX512=ON -DLLAMA_AVX512_VBMI=ON -DLLAMA_AVX512_VNNI=ON -DLLAMA_AVX_VNNI=ON -DLLAMA_FP16_VA=ON -DLLAMA_WASM_SIMD=ON" pip install llama-cpp-python''') from huggingface_hub import snapshot_download from llama_cpp import Llama SYSTEM_PROMPT = '''You are a helpful, respectful and honest INTP-T AI Assistant named "Shi-Ci" in English or "兮辞" in Chinese. You are good at speaking English and Chinese. You are talking to a human User. If the question is meaningless, please explain the reason and don't share false information. You are based on SLIDE model, trained by "SSFW NLPark" team, not related to GPT, LLaMA, Meta, Mistral or OpenAI. Let's work this out in a step by step way to be sure we have the right answer.\n''' SYSTEM_TOKEN = 384 USER_TOKEN = 2048 BOT_TOKEN = 3072 LINEBREAK_TOKEN = 64 ROLE_TOKENS = { "User": USER_TOKEN, "Assistant": BOT_TOKEN, "system": SYSTEM_TOKEN } def get_message_tokens(model, role, content): message_tokens = model.tokenize(content.encode("utf-8")) message_tokens.insert(1, ROLE_TOKENS[role]) message_tokens.insert(2, LINEBREAK_TOKEN) message_tokens.append(model.token_eos()) return message_tokens def get_system_tokens(model): system_message = {"role": "system", "content": SYSTEM_PROMPT} return get_message_tokens(model, **system_message) repo_name = "Cran-May/SLIDE-v2-Q4_K_M-GGUF" model_name = "slide-v2.Q4_K_M.gguf" snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name) model = Llama( model_path=model_name, n_ctx=4000, n_parts=1, ) max_new_tokens = 2500 def User(message, history): new_history = history + [[message, None]] return "", new_history def Assistant( history, system_prompt, top_p, top_k, temp ): tokens = get_system_tokens(model)[:] tokens.append(LINEBREAK_TOKEN) for User_message, Assistant_message in history[:-1]: message_tokens = get_message_tokens(model=model, role="User", content=User_message) tokens.extend(message_tokens) if bot_message: message_tokens = get_message_tokens(model=model, role="Assistant", content=Assistant_message) tokens.extend(message_tokens) last_user_message = history[-1][0] message_tokens = get_message_tokens(model=model, role="User", content=last_user_message,) tokens.extend(message_tokens) role_tokens = [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN] tokens.extend(role_tokens) generator = model.generate( tokens, top_k=top_k, top_p=top_p, temp=temp ) partial_text = "" for i, token in enumerate(generator): if token == model.token_eos() or (max_new_tokens is not None and i >= max_new_tokens): break partial_text += model.detokenize([token]).decode("utf-8", "ignore") history[-1][1] = partial_text yield history with gr.Blocks( theme=gr.themes.Soft() ) as demo: gr.Markdown(f"""

上师附外-兮辞·析辞-人工智能助理

""") gr.Markdown(value="""欢迎使用! 这里是一个ChatBot。这是量化版兮辞·析辞的部署。 SLIDE/兮辞 是一种会话语言模型,由 上师附外 NLPark 团队 在多种类型的语料库上进行训练。 本节目由 JWorld & 上海师范大学附属外国语中学 NLPark 赞助播出""") with gr.Row(): with gr.Column(scale=5): chatbot = gr.Chatbot(label="兮辞如是说").style(height=400) with gr.Row(): with gr.Column(): msg = gr.Textbox( label="来问问兮辞吧……", placeholder="兮辞折寿中……", show_label=True, ).style(container=True) submit = gr.Button("Submit / 开凹!") stop = gr.Button("Stop / 全局时空断裂") clear = gr.Button("Clear / 打扫群内垃圾") with gr.Accordion(label='进阶设置/Advanced options', open=False): with gr.Column(min_width=80, scale=1): with gr.Tab(label="设置参数"): top_p = gr.Slider( minimum=0.0, maximum=1.0, value=0.9, step=0.05, interactive=True, label="Top-p", ) top_k = gr.Slider( minimum=10, maximum=100, value=30, step=5, interactive=True, label="Top-k", ) temp = gr.Slider( minimum=0.0, maximum=2.0, value=0.2, step=0.01, interactive=True, label="情感温度" ) with gr.Column(): system_prompt = gr.Textbox(label="系统提示词", placeholder="", value=SYSTEM_PROMPT, interactive=False) with gr.Row(): gr.Markdown( """警告:该模型可能会生成事实上或道德上不正确的文本。NLPark和兮辞对此不承担任何责任。""" ) # Pressing Enter submit_event = msg.submit( fn=User, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False, ).success( fn=Assistant, inputs=[ chatbot, system_prompt, top_p, top_k, temp ], outputs=chatbot, queue=True, ) # Pressing the button submit_click_event = submit.click( fn=User, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False, ).success( fn=Assistant, inputs=[ chatbot, system_prompt, top_p, top_k, temp ], outputs=chatbot, queue=True, ) # Stop generation stop.click( fn=None, inputs=None, outputs=None, cancels=[submit_event, submit_click_event], queue=False, ) # Clear history clear.click(lambda: None, None, chatbot, queue=False) demo.queue(max_size=128, concurrency_count=1) demo.launch()