from __future__ import annotations import gradio as gr import time from ctransformers import AutoModelForCausalLM from typing import Iterable import gradio as gr from gradio.themes.base import Base from gradio.themes.utils import colors, fonts, sizes import subprocess from huggingface_hub import hf_hub_download # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. model = AutoModelForCausalLM.from_pretrained("s3nh/internlm-internlm-chat-7b-v1_1-GGUF", model_file="internlm-internlm-chat-7b-v1_1.Q4_K_M.gguf", gpu_layers=0) ins = ''' ''' theme = gr.themes.Monochrome( primary_hue="indigo", secondary_hue="blue", neutral_hue="slate", radius_size=gr.themes.sizes.radius_sm, font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"], ) def response(question): res = model(ins.format(question)) yield res examples = [ "Hello!" ] def process_example(args): for x in response(args): pass return x css = ".generating {visibility: hidden}" # Based on the gradio theming guide and borrowed from https://huggingface.co/spaces/shivi/dolly-v2-demo class SeafoamCustom(Base): def __init__( self, *, primary_hue: colors.Color | str = colors.emerald, secondary_hue: colors.Color | str = colors.blue, neutral_hue: colors.Color | str = colors.blue, spacing_size: sizes.Size | str = sizes.spacing_md, radius_size: sizes.Size | str = sizes.radius_md, font: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("Quicksand"), "ui-sans-serif", "sans-serif", ), font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", ), ): super().__init__( primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue, spacing_size=spacing_size, radius_size=radius_size, font=font, font_mono=font_mono, ) super().set( button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)", button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)", button_primary_text_color="white", button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)", block_shadow="*shadow_drop_lg", button_shadow="*shadow_drop_lg", input_background_fill="zinc", input_border_color="*secondary_300", input_shadow="*shadow_drop", input_shadow_focus="*shadow_drop_lg", ) seafoam = SeafoamCustom() with gr.Blocks(theme=seafoam, analytics_enabled=False, css=css) as demo: with gr.Column(): gr.Markdown( """ ## Shi-Ci Extensional Analyzer Type in the box below and click the button to generate answers to your most pressing questions! """ ) with gr.Row(): with gr.Column(scale=3): instruction = gr.Textbox(placeholder="Enter your question here", label="Question", elem_id="q-input") with gr.Box(): gr.Markdown("**Answer**") output = gr.Markdown(elem_id="q-output") submit = gr.Button("Generate", variant="primary") gr.Examples( examples=examples, inputs=[instruction], cache_examples=True, fn=process_example, outputs=[output], ) submit.click(response, inputs=[instruction], outputs=[output]) instruction.submit(response, inputs=[instruction], outputs=[output]) demo.queue(concurrency_count=1).launch(debug=False,share=True)