import os import time import json import random import string import socket import nest_asyncio import requests from typing import Any from flask import Flask, request, jsonify, Response from flask_cors import CORS import logging from .embedding_processing import embedding_processing import g4f from g4f import ChatCompletion, Provider, BaseProvider, models from g4f.models import ModelUtils nest_asyncio.apply() app = Flask(__name__) CORS(app) LOG = logging.getLogger(__name__) embedding_proc = embedding_processing() @app.route("/chat/completions", methods=['POST']) @app.route("/v1/chat/completions", methods=['POST']) @app.route("/", methods=['POST']) def chat_completions(): request_data = request.get_json() model = request_data.get('model', 'gpt-3.5-turbo').replace("neuro-", "") messages = request_data.get('messages') stream = request_data.get('stream', False) streaming_ = request_data.get('stream', False) temperature = request_data.get('temperature', 1.0) top_p = request_data.get('top_p', 1.0) max_tokens = request_data.get('max_tokens', 1024) response = ChatCompletion.create(model=model, stream=stream, messages=messages, temperature=temperature, top_p=top_p, max_tokens=max_tokens, system_prompt="") completion_id = "".join(random.choices(string.ascii_letters + string.digits, k=28)) completion_timestamp = int(time.time()) if not streaming_: completion_timestamp = int(time.time()) completion_id = ''.join(random.choices( 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789', k=28)) return { "id": f"chatcmpl-{completion_id}", "object": "chat.completion", "created": completion_timestamp, "model": model, "choices": [ { "index": 0, "message": { "role": "assistant", "content": response, }, "finish_reason": "stop", } ], "usage": { "prompt_tokens": None, "completion_tokens": None, "total_tokens": None, }, } def streaming(): for chunk in response: completion_data = { 'id': f'chatcmpl-{completion_id}', 'object': 'chat.completion.chunk', 'created': completion_timestamp, 'model': model, 'choices': [ { 'index': 0, 'delta': { 'content': chunk, }, 'finish_reason': None, } ], } content = json.dumps(completion_data, separators=(',', ':')) yield f'data: {content}\n\n' time.sleep(0.05) end_completion_data: dict[str, Any] = { 'id': f'chatcmpl-{completion_id}', 'object': 'chat.completion.chunk', 'created': completion_timestamp, 'model': model, 'choices': [ { 'index': 0, 'delta': {}, 'finish_reason': 'stop', } ], } content = json.dumps(end_completion_data, separators=(',', ':')) yield f'data: {content}\n\n' return app.response_class(streaming(), mimetype='text/event-stream') @app.route("/engines/text-embedding-ada-002/embeddings", methods=["POST"]) @app.route("/engines/text-similarity-davinci-001/embeddings", methods=["POST"]) @app.route('/v1/embeddings', methods=['POST']) @app.route('/embeddings', methods=['POST']) def create_embedding(): j_input = request.get_json() #model = embedding_processing() embedding = embedding_proc.embedding(text_list=j_input['input']) log_event() return jsonify( embedding ) def log_event(): LOG.info('served') @app.route("/v1/dashboard/billing/subscription", methods=['GET']) @app.route("/dashboard/billing/subscription", methods=['GET']) def billing_subscription(): return jsonify({ "object": "billing_subscription", "has_payment_method": True, "canceled": False, "canceled_at": None, "delinquent": None, "access_until": 2556028800, "soft_limit": 6944500, "hard_limit": 166666666, "system_hard_limit": 166666666, "soft_limit_usd": 416.67, "hard_limit_usd": 9999.99996, "system_hard_limit_usd": 9999.99996, "plan": { "title": "Pay-as-you-go", "id": "payg" }, "primary": True, "account_name": "OpenAI", "po_number": None, "billing_email": None, "tax_ids": None, "billing_address": { "city": "New York", "line1": "OpenAI", "country": "US", "postal_code": "NY10031" }, "business_address": None } ) @app.route("/v1/dashboard/billing/usage", methods=['GET']) @app.route("/dashboard/billing/usage", methods=['GET']) def billing_usage(): return jsonify({ "object": "list", "daily_costs": [ { "timestamp": time.time(), "line_items": [ { "name": "GPT-4", "cost": 0.0 }, { "name": "Chat models", "cost": 1.01 }, { "name": "InstructGPT", "cost": 0.0 }, { "name": "Fine-tuning models", "cost": 0.0 }, { "name": "Embedding models", "cost": 0.0 }, { "name": "Image models", "cost": 16.0 }, { "name": "Audio models", "cost": 0.0 } ] } ], "total_usage": 1.01 } ) @app.route("/v1/models", methods=['GET']) @app.route("/models", methods=['GET']) def models(): import g4f.models model = {"data":[]} for i in g4f.models.ModelUtils.convert: model['data'].append({ "id": i, "object": "model", "owned_by": g4f.models.ModelUtils.convert[i].base_provider, "tokens": 99999, "fallbacks": None, "endpoints": [ "/v1/chat/completions" ], "limits": None, "permission": [] }) return jsonify(model) @app.route("/v1/providers", methods=['GET']) @app.route("/providers", methods=['GET']) def providers(): files = os.listdir("g4f/Provider/Providers") files = [f for f in files if os.path.isfile(os.path.join("g4f/Provider/Providers", f))] files.sort(key=str.lower) providers_data = {"data":[]} for file in files: if file.endswith(".py"): name = file[:-3] try: p = getattr(g4f.Provider,name) providers_data["data"].append({ "provider": str(name), "model": list(p.model), "url": str(p.url), "working": bool(p.working), "supports_stream": bool(p.supports_stream) }) except: pass return jsonify(providers_data)