""" Full definition of a GPT Language Model, all of it in this single file. References: 1) the official GPT-2 TensorFlow implementation released by OpenAI: https://github.com/openai/gpt-2/blob/master/src/model.py 2) huggingface/transformers PyTorch implementation: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py """ import math import inspect from dataclasses import dataclass import torch import torch.nn as nn from torch.nn import functional as F # @torch.jit.script # good to enable when not using torch.compile, disable when using (our default) def new_gelu(x): """ Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Reference: Gaussian Error Linear Units (GELU) paper: https://arxiv.org/abs/1606.08415 """ return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0)))) class LayerNorm(nn.Module): """ LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """ def __init__(self, ndim, bias): super().__init__() self.weight = nn.Parameter(torch.ones(ndim)) self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None def forward(self, input): return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5) class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 # key, query, value projections for all heads, but in a batch self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) # output projection self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) # regularization self.attn_dropout = nn.Dropout(config.dropout) self.resid_dropout = nn.Dropout(config.dropout) self.n_head = config.n_head self.n_embd = config.n_embd self.dropout = config.dropout # flash attention make GPU go brrrrr but support is only in PyTorch nightly and still a bit scary self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and self.dropout == 0.0 if not self.flash: # print("WARNING: using slow attention. Flash Attention atm needs PyTorch nightly and dropout=0.0") # causal mask to ensure that attention is only applied to the left in the input sequence self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size)) def forward(self, x): B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) # calculate query, key, values for all heads in batch and move head forward to be the batch dim q, k ,v = self.c_attn(x).split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) if self.flash: # efficient attention using Flash Attention CUDA kernels y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout, is_causal=True) else: # manual implementation of attention att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) att = F.softmax(att, dim=-1) att = self.attn_dropout(att) y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side # output projection y = self.resid_dropout(self.c_proj(y)) return y class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) self.dropout = nn.Dropout(config.dropout) def forward(self, x): x = self.c_fc(x) x = new_gelu(x) x = self.c_proj(x) x = self.dropout(x) return x class Block(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = LayerNorm(config.n_embd, bias=config.bias) self.attn = CausalSelfAttention(config) self.ln_2 = LayerNorm(config.n_embd, bias=config.bias) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x @dataclass class GPTConfig: block_size: int = 1024 vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency n_layer: int = 12 n_head: int = 12 n_embd: int = 768 dropout: float = 0.0 bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster class GPT(nn.Module): def __init__(self, config): super().__init__() assert config.vocab_size is not None assert config.block_size is not None self.config = config self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.vocab_size, config.n_embd), wpe = nn.Embedding(config.block_size, config.n_embd), drop = nn.Dropout(config.dropout), h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f = LayerNorm(config.n_embd, bias=config.bias), )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # with weight tying when using torch.compile() some warnings get generated: # "UserWarning: functional_call was passed multiple values for tied weights. # This behavior is deprecated and will be an error in future versions" # not 100% sure what this is, so far seems to be harmless. TODO investigate self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying # init all weights self.apply(self._init_weights) # apply special scaled init to the residual projections, per GPT-2 paper for pn, p in self.named_parameters(): if pn.endswith('c_proj.weight'): torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) # report number of parameters print("number of parameters: %.2fM" % (self.get_num_params()/1e6,)) def get_num_params(self, non_embedding=True): """ Return the number of parameters in the model. For non-embedding count (default), the position embeddings get subtracted. The token embeddings would too, except due to the parameter sharing these params are actually used as weights in the final layer, so we include them. """ n_params = sum(p.numel() for p in self.parameters()) if non_embedding: n_params -= self.transformer.wpe.weight.numel() return n_params def reset_parameters(self): # Initialize weights using Glorot initialization for param in self.parameters(): if param.dim() > 1: torch.nn.init.xavier_uniform_(param) def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, targets=None): device = idx.device b, t = idx.size() assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t) # forward the GPT model itself tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) pos_emb = self.transformer.wpe(pos) # position embeddings of shape (1, t, n_embd) x = self.transformer.drop(tok_emb + pos_emb) for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) if targets is not None: # if we are given some desired targets also calculate the loss logits = self.lm_head(x) loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) else: # inference-time mini-optimization: only forward the lm_head on the very last position logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim loss = None return logits, loss def crop_block_size(self, block_size): # model surgery to decrease the block size if necessary # e.g. we may load the GPT2 pretrained model checkpoint (block size 1024) # but want to use a smaller block size for some smaller, simpler model assert block_size <= self.config.block_size self.config.block_size = block_size self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size]) for block in self.transformer.h: block.attn.bias = block.attn.bias[:,:,:block_size,:block_size] @classmethod def from_pretrained(cls, model_type, override_args=None): assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} override_args = override_args or {} # default to empty dict # only dropout can be overridden see more notes below assert all(k == 'dropout' for k in override_args) from transformers import GPT2LMHeadModel print("loading weights from pretrained gpt: %s" % model_type) # n_layer, n_head and n_embd are determined from model_type config_args = { 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params }[model_type] print("forcing vocab_size=50257, block_size=1024, bias=True") config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints config_args['bias'] = True # always True for GPT model checkpoints # we can override the dropout rate, if desired if 'dropout' in override_args: print(f"overriding dropout rate to {override_args['dropout']}") config_args['dropout'] = override_args['dropout'] # create a from-scratch initialized minGPT model config = GPTConfig(**config_args) model = GPT(config) sd = model.state_dict() sd_keys = sd.keys() sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param # init a huggingface/transformers model model_hf = GPT2LMHeadModel.from_pretrained(model_type) sd_hf = model_hf.state_dict() # copy while ensuring all of the parameters are aligned and match in names and shapes sd_keys_hf = sd_hf.keys() sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer) transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear # this means that we have to transpose these weights when we import them assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" for k in sd_keys_hf: if any(k.endswith(w) for w in transposed): # special treatment for the Conv1D weights we need to transpose assert sd_hf[k].shape[::-1] == sd[k].shape with torch.no_grad(): sd[k].copy_(sd_hf[k].t()) else: # vanilla copy over the other parameters assert sd_hf[k].shape == sd[k].shape with torch.no_grad(): sd[k].copy_(sd_hf[k]) return model def configure_optimizers(self, weight_decay, learning_rate, betas, device_type): """ This long function is unfortunately doing something very simple and is being very defensive: We are separating out all parameters of the model into two buckets: those that will experience weight decay for regularization and those that won't (biases, and layernorm/embedding weights). We are then returning the PyTorch optimizer object. """ # separate out all parameters to those that will and won't experience regularizing weight decay decay = set() no_decay = set() whitelist_weight_modules = (torch.nn.Linear, ) blacklist_weight_modules = (torch.nn.LayerNorm, LayerNorm, torch.nn.Embedding) for mn, m in self.named_modules(): for pn, p in m.named_parameters(): fpn = '%s.%s' % (mn, pn) if mn else pn # full param name # random note: because named_modules and named_parameters are recursive # we will see the same tensors p many many times. but doing it this way # allows us to know which parent module any tensor p belongs to... if pn.endswith('bias'): # all biases will not be decayed no_decay.add(fpn) elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules): # weights of whitelist modules will be weight decayed decay.add(fpn) elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules): # weights of blacklist modules will NOT be weight decayed no_decay.add(fpn) # subtle: 'transformer.wte.weight' and 'lm_head.weight' are tied, so they # will appear in the no_decay and decay sets respectively after the above. # In addition, because named_parameters() doesn't return duplicates, it # will only return the first occurence, key'd by 'transformer.wte.weight', below. # so let's manually remove 'lm_head.weight' from decay set. This will include # this tensor into optimization via transformer.wte.weight only, and not decayed. decay.remove('lm_head.weight') # validate that we considered every parameter param_dict = {pn: p for pn, p in self.named_parameters()} inter_params = decay & no_decay union_params = decay | no_decay assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), ) assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \ % (str(param_dict.keys() - union_params), ) # create the pytorch optimizer object optim_groups = [ {"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": weight_decay}, {"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0}, ] # new PyTorch nightly has a new 'fused' option for AdamW that is much faster use_fused = (device_type == 'cuda') and ('fused' in inspect.signature(torch.optim.AdamW).parameters) print(f"using fused AdamW: {use_fused}") extra_args = dict(fused=True) if use_fused else dict() optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args) return optimizer def estimate_mfu(self, fwdbwd_per_iter, dt): """ estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """ # first estimate the number of flops we do per iteration. # see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311 N = self.get_num_params() cfg = self.config L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size flops_per_token = 6*N + 12*L*H*Q*T flops_per_fwdbwd = flops_per_token * T flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter # express our flops throughput as ratio of A100 bfloat16 peak flops flops_achieved = flops_per_iter * (1.0/dt) # per second flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS mfu = flops_achieved / flops_promised return mfu @torch.no_grad() def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): """ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete the sequence max_new_tokens times, feeding the predictions back into the model each time. Most likely you'll want to make sure to be in model.eval() mode of operation for this. """ for _ in range(max_new_tokens): # if the sequence context is growing too long we must crop it at block_size idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] # forward the model to get the logits for the index in the sequence logits, _ = self(idx_cond) # pluck the logits at the final step and scale by desired temperature logits = logits[:, -1, :] / temperature # optionally crop the logits to only the top k options if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits[logits < v[:, [-1]]] = -float('Inf') # apply softmax to convert logits to (normalized) probabilities probs = F.softmax(logits, dim=-1) # sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # append sampled index to the running sequence and continue idx = torch.cat((idx, idx_next), dim=1) return idx @torch.no_grad() def generate_streaming(self, idx, max_new_tokens, temperature=1.0, top_k=None): """ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete the sequence max_new_tokens times, feeding the predictions back into the model each time. Yield the generated indices one at a time rather than concatenating them into a single tensor. Most likely you'll want to make sure to be in model.eval() mode of operation for this. """ for _ in range(max_new_tokens): # if the sequence context is growing too long we must crop it at block_size idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] # forward the model to get the logits for the index in the sequence logits, _ = self(idx_cond) # pluck the logits at the final step and scale by desired temperature logits = logits[:, -1, :] / temperature # optionally crop the logits to only the top k options if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits[logits < v[:, [-1]]] = -float('Inf') # apply softmax to convert logits to (normalized) probabilities probs = F.softmax(logits, dim=-1) # sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # yield the next index # append sampled index to the running sequence and continue idx = torch.cat((idx, idx_next), dim=1) yield idx_next.item() @torch.no_grad() def generate_instructed_streaming(self, idx, idi, max_new_tokens, temperature=1.0, top_k=None): """ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete the sequence max_new_tokens times, feeding the predictions back into the model each time. Yield the generated indices one at a time rather than concatenating them into a single tensor. Most likely you'll want to make sure to be in model.eval() mode of operation for this. """ idi_length = idi.size(1) max_idx_length = self.config.block_size - idi_length # Precompute the minimum top_k value for logits.size(-1) min_top_k = None if top_k is not None: min_top_k = min(top_k, self.config.vocab_size) for _ in range(max_new_tokens): # if the sequence context is growing too long we must crop it at block_size idx_cond = idx if idx.size(1) <= max_idx_length else idx[:, -max_idx_length:] # concatenate idi with the cropped idx idx_cond = torch.cat((idi, idx_cond), dim=1) # forward the model to get the logits for the index in the sequence logits, _ = self(idx_cond) # pluck the logits at the final step and scale by desired temperature logits = logits[:, -1, :] / temperature # optionally crop the logits to only the top k options if min_top_k is not None: v, _ = torch.topk(logits, min_top_k) logits[logits < v[:, [-1]]] = -float('Inf') # apply softmax to convert logits to (normalized) probabilities probs = F.softmax(logits, dim=-1) # sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # yield the next index # append sampled index to the running sequence and continue idx = torch.cat((idx, idx_next), dim=1) yield idx_next.item()