import os import openai import gradio as gr from gtts import gTTS from transformers import pipeline openai.api_key = os.getenv("OPENAI_API_KEY") pipe = pipeline(model="seeafricatz/kiaziboraasr") def transcribe(audio): text = pipe(audio)["text"] return text def generate_response(transcribed_text): response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ { "role": "system", "content": "All your answers should be in Swahili only, users understand Swahili only so here we start... Wewe ni mtaalamu wa haki za ardhi za wanawake nchini Kongo na utajibu maswali yote kwa Kiswahili tu!" }, { "role": "user", "content": "Mambo vipi?" }, { "role": "assistant", "content": "Salama, je una swali lolote kuhusu haki za ardhi za wanawake nchini Kongo?" }, { "role": "user", "content": "nini maana ya haki za ardhi za wanawake?" }, { "role": "assistant", "content": "Haki za ardhi za wanawake zinamaanisha haki za wanawake kumiliki, kutumia, na kudhibiti ardhi. Katika muktadha wa Kongo, haki hizi zinaweza kuathiriwa na mila, sheria, na mizozo ya ardhi." }, { "role": "user", "content": "nini matumizi ya haki za ardhi za wanawake?" }, { "role": "assistant", "content": "Haki za ardhi za wanawake zina umuhimu mkubwa kwa kuwawezesha wanawake kiuchumi, kuimarisha usalama wa chakula, na kuchangia katika maendeleo ya jamii na taifa kwa ujumla. Kwa mfano, wanawake wenye haki za ardhi wanaweza kupata mikopo, kuendeleza ardhi, na kutoa mchango muhimu katika uchumi wa familia na jamii." }, { "role": "user", "content": transcribed_text }, ] ) return response['choices'][0]['message']['content'] import os import subprocess import locale locale.getpreferredencoding = lambda: "UTF-8" def download(lang, tgt_dir="./"): lang_fn, lang_dir = os.path.join(tgt_dir, lang+'.tar.gz'), os.path.join(tgt_dir, lang) cmd = ";".join([ f"wget https://dl.fbaipublicfiles.com/mms/tts/{lang}.tar.gz -O {lang_fn}", f"tar zxvf {lang_fn}" ]) print(f"Download model for language: {lang}") subprocess.check_output(cmd, shell=True) print(f"Model checkpoints in {lang_dir}: {os.listdir(lang_dir)}") return lang_dir LANG = "swh" ckpt_dir = download(LANG) from IPython.display import Audio import os import re import glob import json import tempfile import math import torch from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader import numpy as np import commons import utils import argparse import subprocess from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate from models import SynthesizerTrn from scipy.io.wavfile import write def preprocess_char(text, lang=None): """ Special treatement of characters in certain languages """ print(lang) if lang == 'ron': text = text.replace("ț", "ţ") return text class TextMapper(object): def __init__(self, vocab_file): self.symbols = [x.replace("\n", "") for x in open(vocab_file, encoding="utf-8").readlines()] self.SPACE_ID = self.symbols.index(" ") self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)} self._id_to_symbol = {i: s for i, s in enumerate(self.symbols)} def text_to_sequence(self, text, cleaner_names): '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text. Args: text: string to convert to a sequence cleaner_names: names of the cleaner functions to run the text through Returns: List of integers corresponding to the symbols in the text ''' sequence = [] clean_text = text.strip() for symbol in clean_text: symbol_id = self._symbol_to_id[symbol] sequence += [symbol_id] return sequence def uromanize(self, text, uroman_pl): iso = "xxx" with tempfile.NamedTemporaryFile() as tf, \ tempfile.NamedTemporaryFile() as tf2: with open(tf.name, "w") as f: f.write("\n".join([text])) cmd = f"perl " + uroman_pl cmd += f" -l {iso} " cmd += f" < {tf.name} > {tf2.name}" os.system(cmd) outtexts = [] with open(tf2.name) as f: for line in f: line = re.sub(r"\s+", " ", line).strip() outtexts.append(line) outtext = outtexts[0] return outtext def get_text(self, text, hps): text_norm = self.text_to_sequence(text, hps.data.text_cleaners) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm = torch.LongTensor(text_norm) return text_norm def filter_oov(self, text): val_chars = self._symbol_to_id txt_filt = "".join(list(filter(lambda x: x in val_chars, text))) print(f"text after filtering OOV: {txt_filt}") return txt_filt def preprocess_text(txt, text_mapper, hps, uroman_dir=None, lang=None): txt = preprocess_char(txt, lang=lang) is_uroman = hps.data.training_files.split('.')[-1] == 'uroman' if is_uroman: with tempfile.TemporaryDirectory() as tmp_dir: if uroman_dir is None: cmd = f"git clone git@github.com:isi-nlp/uroman.git {tmp_dir}" print(cmd) subprocess.check_output(cmd, shell=True) uroman_dir = tmp_dir uroman_pl = os.path.join(uroman_dir, "bin", "uroman.pl") print(f"uromanize") txt = text_mapper.uromanize(txt, uroman_pl) print(f"uroman text: {txt}") txt = txt.lower() txt = text_mapper.filter_oov(txt) return txt if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") print(f"Run inference with {device}") vocab_file = f"{ckpt_dir}/vocab.txt" config_file = f"{ckpt_dir}/config.json" assert os.path.isfile(config_file), f"{config_file} doesn't exist" hps = utils.get_hparams_from_file(config_file) text_mapper = TextMapper(vocab_file) net_g = SynthesizerTrn( len(text_mapper.symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, **hps.model) net_g.to(device) _ = net_g.eval() g_pth = f"{ckpt_dir}/G_100000.pth" print(f"load {g_pth}") _ = utils.load_checkpoint(g_pth, net_g, None) If you want to use the original text-to-speech code in place of the gTTS library within the inference function, you should move the original text-to-speech code into the inference function, and adjust the function to save the generated audio to a file and return the file path. Here's how you might do it: python Copy code import torch from scipy.io.wavfile import write def inference(text): # Preprocessing the text text = preprocess_text(text, text_mapper, hps, lang=LANG) stn_tst = text_mapper.get_text(text, hps) with torch.no_grad(): x_tst = stn_tst.unsqueeze(0).to(device) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device) hyp = net_g.infer( x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1.0 )[0][0,0].cpu().float().numpy() # Saving the generated audio to a file output_file = "tts_output.wav" write(output_file, hps.data.sampling_rate, hyp) return output_file def process_audio_and_respond(audio): text = transcribe(audio) response_text = generate_response(text) output_file = inference(response_text) return response_text, output_file demo = gr.Interface( process_audio_and_respond, gr.inputs.Audio(source="microphone", type="filepath", label="Bonyeza kitufe cha kurekodi na uliza swali lako"), [gr.outputs.Textbox(label="Jibu (kwa njia ya maandishi)"), gr.outputs.Audio(type="filepath", label="Jibu kwa njia ya sauti (Bofya kusikiliza Jibu)")], title="Haki", description="Uliza Swali kuhusu haki za ardhi", theme="compact", layout="vertical", allow_flagging=False, live=True, ) demo.launch()