from fastapi import FastAPI from fastapi.staticfiles import StaticFiles from fastapi.responses import FileResponse from transformers import pipeline app = FastAPI() pipe_flan = pipeline("text2text-generation", model="google/flan-t5-small") @app.get("/infer_t5") def t5(input): output = pipe_flan(input) return {"output": output[0]["generated_text"]} # @app.post("/classify/") # async def classify_doc(file: UploadFile): # return {"file_size": len(file)} @app.post("/classify/") async def classify_doc(files: List[UploadFile] = File(...)): for file in files: try: contents = file.file.read() classify_res = classify_acct_dtype_str(contents.stream) except Exception: return {"message": "There was an error in uploading file(s)"} finally: file.file.close() return {"message": f"Successfuly uploaded {[(file.filename+ " " + classify_res) for file in files]}"} app.mount("/", StaticFiles(directory="static", html=True), name="static") @app.get("/") def index() -> FileResponse: return FileResponse(path="/app/static/index.html", media_type="text/html") import re import torch from transformers import DonutProcessor, VisionEncoderDecoderModel from datasets import load_dataset import os from PIL import Image # Doc classifier model classifier_doctype_processor = DonutProcessor.from_pretrained("calumpianojericho/donutclassifier_acctdocs_by_doctype") classifier_doctype_model = VisionEncoderDecoderModel.from_pretrained("calumpianojericho/donutclassifier_acctdocs_by_doctype") """### Inference Code""" def inference(input, model, processor, threshold=1.0, task_prompt="", get_confidence=False): device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) is_confident = True decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids pil_img=input image = np.array(pil_img) pixel_values = processor(image, return_tensors="pt").pixel_values outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id= processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, output_scores=True, ) sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token seq = processor.token2json(sequence) if get_confidence: return seq, pred_confidence(outputs.scores, threshold) return seq def pred_confidence(output_scores, threshold): is_confident=True for score in output_scores: exp_scores = np.exp(score[0].cpu().numpy()) # scores are logits, we use the exp function so that all values are positive sum_exp = np.sum(exp_scores) # taking the sum of the token scores idx = np.argmax(exp_scores) # taking the index of the token with the highest score prob_max = exp_scores[idx]/sum_exp # normalizing the token with the highest score wrt the sum of all scores. Returns probability if prob_max < threshold: is_confident = False # print(prob_max) return is_confident CUDA_LAUNCH_BLOCKING=1 def parse_text(input, filename): model = base_model processor = base_processor seq = inference(input, model, processor, task_prompt="") return str(seq) def doctype_classify(input, filename): model = classifier_doctype_model processor = classifier_doctype_processor seq, is_confident = inference(input, model, processor, threshold=0.90, task_prompt="", get_confidence=True) return seq.get('class'), is_confident def account_classify(input, filename): model = classifier_account_model processor = classifier_account_processor seq, is_confident = inference(input, model, processor, threshold=0.999, task_prompt="", get_confidence=True) return seq.get('class'), is_confident """## Text processing/string matcher code""" import locale locale.getpreferredencoding = lambda: "UTF-8" """## Classify Document Images""" import numpy as np import csv import re import os import requests from io import BytesIO def classify_acct_dtype_str(input_path): response = requests.get("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg") ipt = Image.open(BytesIO(response.content)) dtype_inf, dtype_conf = doctype_classify(ipt, "city-streets.jpg") return dtype_inf # classify_acct_dtype_str("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg")