# List of requirements # torch~=1.13 # torchvision # opencv-python # scipy # numpy # tqdm # timm # einops # scikit-video # pillow # logger # diffusers # transformers # accelerate # requests # pycocoevalcap import os import torch import cv2 import numpy as np from PIL import Image from transformers import CLIPProcessor, CLIPModel, AutoTokenizer import time import logging from tqdm import tqdm import argparse import torchvision.transforms as transforms from torchvision.transforms import Resize from torchvision.utils import save_image from diffusers import StableDiffusionXLPipeline import requests from transformers import AutoProcessor, Blip2ForConditionalGeneration import ipdb from pycocoevalcap.cider.cider import Cider from pycocoevalcap.bleu.bleu import Bleu def calculate_clip_score(video_path, text, model, tokenizer): # Load the video cap = cv2.VideoCapture(video_path) # Extract frames from the video frames = [] while cap.isOpened(): ret, frame = cap.read() if not ret: break frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) resized_frame = cv2.resize(frame,(224,224)) # Resize the frame to match the expected input size frames.append(resized_frame) # Convert numpy arrays to tensors, change dtype to float, and resize frames tensor_frames = [torch.from_numpy(frame).permute(2, 0, 1).float() for frame in frames] # Initialize an empty tensor to store the concatenated features concatenated_features = torch.tensor([], device=device) # Generate embeddings for each frame and concatenate the features with torch.no_grad(): for frame in tensor_frames: frame_input = frame.unsqueeze(0).to(device) # Add batch dimension and move the frame to the device frame_features = model.get_image_features(frame_input) concatenated_features = torch.cat((concatenated_features, frame_features), dim=0) # Tokenize the text text_tokens = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=77) # Convert the tokenized text to a tensor and move it to the device text_input = text_tokens["input_ids"].to(device) # Generate text embeddings with torch.no_grad(): text_features = model.get_text_features(text_input) # Calculate the cosine similarity scores concatenated_features = concatenated_features / concatenated_features.norm(p=2, dim=-1, keepdim=True) text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True) clip_score_frames = concatenated_features @ text_features.T # Calculate the average CLIP score across all frames, reflects temporal consistency clip_score_frames_avg = clip_score_frames.mean().item() return clip_score_frames_avg def calculate_clip_temp_score(video_path, model): # Load the video cap = cv2.VideoCapture(video_path) to_tensor = transforms.ToTensor() # Extract frames from the video frames = [] SD_images = [] resize = transforms.Resize([224,224]) while cap.isOpened(): ret, frame = cap.read() if not ret: break frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # resized_frame = cv2.resize(frame,(224,224)) # Resize the frame to match the expected input size frames.append(frame) tensor_frames = torch.stack([resize(torch.from_numpy(frame).permute(2, 0, 1).float()) for frame in frames]) # tensor_frames = [extracted_frames[i] for i in range(extracted_frames.size()[0])] concatenated_frame_features = [] # Generate embeddings for each frame and concatenate the features with torch.no_grad(): for frame in tensor_frames: # Too many frames in a video, must split before CLIP embedding, limited by the memory frame_input = frame.unsqueeze(0).to(device) # Add batch dimension and move the frame to the device frame_feature = model.get_image_features(frame_input) concatenated_frame_features.append(frame_feature) concatenated_frame_features = torch.cat(concatenated_frame_features, dim=0) # Calculate the similarity scores clip_temp_score = [] concatenated_frame_features = concatenated_frame_features / concatenated_frame_features.norm(p=2, dim=-1, keepdim=True) # ipdb.set_trace() for i in range(concatenated_frame_features.size()[0]-1): clip_temp_score.append(concatenated_frame_features[i].unsqueeze(0) @ concatenated_frame_features[i+1].unsqueeze(0).T) clip_temp_score=torch.cat(clip_temp_score, dim=0) # Calculate the average CLIP score across all frames, reflects temporal consistency clip_temp_score_avg = clip_temp_score.mean().item() return clip_temp_score_avg def compute_max(scorer, gt_prompts, pred_prompts): scores = [] for pred_prompt in pred_prompts: for gt_prompt in gt_prompts: cand = {0: [pred_prompt]} ref = {0: [gt_prompt]} score, _ = scorer.compute_score(ref, cand) scores.append(score) return np.max(scores) def calculate_blip_bleu(video_path, original_text, blip2_model, blip2_processor): # Load the video cap = cv2.VideoCapture(video_path) scorer_cider = Cider() bleu1 = Bleu(n=1) bleu2 = Bleu(n=2) bleu3 = Bleu(n=3) bleu4 = Bleu(n=4) # Extract frames from the video frames = [] while cap.isOpened(): ret, frame = cap.read() if not ret: break resized_frame = cv2.resize(frame,(224,224)) # Resize the frame to match the expected input size frames.append(resized_frame) # Convert numpy arrays to tensors, change dtype to float, and resize frames tensor_frames = torch.stack([torch.from_numpy(frame).permute(2, 0, 1).float() for frame in frames]) # Get five captions for one video Num = 5 captions = [] # for i in range(Num): N = len(tensor_frames) indices = torch.linspace(0, N - 1, Num).long() extracted_frames = torch.index_select(tensor_frames, 0, indices) for i in range(Num): frame = extracted_frames[i] inputs = blip2_processor(images=frame, return_tensors="pt").to(device, torch.float16) generated_ids = blip2_model.generate(**inputs) generated_text = blip2_processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() captions.append(generated_text) original_text = [original_text] cider_score = (compute_max(scorer_cider, original_text, captions)) bleu1_score = (compute_max(bleu1, original_text, captions)) bleu2_score = (compute_max(bleu2, original_text, captions)) bleu3_score = (compute_max(bleu3, original_text, captions)) bleu4_score = (compute_max(bleu4, original_text, captions)) blip_bleu_caps_avg = (bleu1_score + bleu2_score + bleu3_score + bleu4_score)/4 return blip_bleu_caps_avg def calculate_sd_score(video_path, text, pipe, model): # Load the video output_dir = "../../SDXL_Imgs" if not os.path.exists(output_dir): os.mkdir(output_dir) cap = cv2.VideoCapture(video_path) to_tensor = transforms.ToTensor() # Extract frames from the video frames = [] SD_images = [] Num = 5 resize = transforms.Resize([224,224]) while cap.isOpened(): ret, frame = cap.read() if not ret: break frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # resized_frame = cv2.resize(frame,(224,224)) # Resize the frame to match the expected input size frames.append(frame) # Load SD imgs from local paths for i in range(Num): ## Num images for every prompt output_dir = "../../SDXL_Imgs" # ipdb.set_trace() SD_image_path = os.path.join(output_dir, f"{os.path.basename(video_path).split('.')[0]}_{i}.png") if os.path.exists(SD_image_path): image = Image.open(SD_image_path) # Convert the image to a tensor image = resize(to_tensor(image)) SD_images.append(image.unsqueeze(0)) else: image = pipe(text, height = 512, width= 512, num_inference_steps = 20).images[0] #!!!!! same amount of SD images, but also can be mutiple times, TODO # Convert the image to a tensor image = resize(to_tensor(image)) SD_images.append(image.unsqueeze(0)) save_image(image,SD_image_path) tensor_frames = [resize(torch.from_numpy(frame).permute(2, 0, 1).float()) for frame in frames] SD_images = torch.cat(SD_images, 0) concatenated_frame_features = [] concatenated_SDImg_features = [] # Generate embeddings for each frame and concatenate the features with torch.no_grad(): for frame in tensor_frames: # Too many frames in a video, must split before CLIP embedding, limited by the memory frame_input = frame.unsqueeze(0).to(device) # Add batch dimension and move the frame to the device frame_feature = model.get_image_features(frame_input) concatenated_frame_features.append(frame_feature) for i in range(SD_images.size()[0]): img = SD_images[i].unsqueeze(0).to(device) # Add batch dimension and move the frame to the device SDImg_feature = model.get_image_features(img) concatenated_SDImg_features.append(SDImg_feature) # ipdb.set_trace() concatenated_frame_features = torch.cat(concatenated_frame_features, dim=0) concatenated_SDImg_features = torch.cat(concatenated_SDImg_features, dim=0) # Calculate the similarity scores concatenated_frame_features = concatenated_frame_features / concatenated_frame_features.norm(p=2, dim=-1, keepdim=True) concatenated_SDImg_features = concatenated_SDImg_features / concatenated_SDImg_features.norm(p=2, dim=-1, keepdim=True) sd_score_frames = concatenated_frame_features @ concatenated_SDImg_features.T # Calculate the average CLIP score across all frames, reflects temporal consistency sd_score_frames_avg = sd_score_frames.mean().item() return sd_score_frames_avg def calculate_face_consistency_score(video_path, model): # Load the video cap = cv2.VideoCapture(video_path) to_tensor = transforms.ToTensor() # Extract frames from the video frames = [] SD_images = [] resize = transforms.Resize([224,224]) while cap.isOpened(): ret, frame = cap.read() if not ret: break frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # resized_frame = cv2.resize(frame,(224,224)) # Resize the frame to match the expected input size frames.append(frame) tensor_frames = [resize(torch.from_numpy(frame).permute(2, 0, 1).float()) for frame in frames] concatenated_frame_features = [] # Generate embeddings for each frame and concatenate the features with torch.no_grad(): for frame in tensor_frames: # Too many frames in a video, must split before CLIP embedding, limited by the memory frame_input = frame.unsqueeze(0).to(device) # Add batch dimension and move the frame to the device frame_feature = model.get_image_features(frame_input) concatenated_frame_features.append(frame_feature) concatenated_frame_features = torch.cat(concatenated_frame_features, dim=0) # Calculate the similarity scores concatenated_frame_features = concatenated_frame_features / concatenated_frame_features.norm(p=2, dim=-1, keepdim=True) face_consistency_score = concatenated_frame_features[1:] @ concatenated_frame_features[0].unsqueeze(0).T # Calculate the average CLIP score across all frames, reflects temporal consistency face_consistency_score_avg = face_consistency_score.mean().item() return face_consistency_score_avg def read_text_file(file_path): with open(file_path, 'r') as f: return f.read().strip() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--dir_videos", type=str, default='', help="Specify the path of generated videos") parser.add_argument("--metric", type=str, default='celebrity_id_score', help="Specify the metric to be used") args = parser.parse_args() dir_videos = args.dir_videos metric = args.metric dir_prompts = '../../prompts/' video_paths = [os.path.join(dir_videos, x) for x in os.listdir(dir_videos)] prompt_paths = [os.path.join(dir_prompts, os.path.splitext(os.path.basename(x))[0]+'.txt') for x in video_paths] # Create the directory if it doesn't exist timestamp = time.strftime("%Y%m%d-%H%M%S") os.makedirs(f"../../results", exist_ok=True) # Set up logging log_file_path = f"../../results/{metric}_record.txt" # Delete the log file if it exists if os.path.exists(log_file_path): os.remove(log_file_path) # Set up logging logger = logging.getLogger() logger.setLevel(logging.INFO) # File handler for writing logs to a file file_handler = logging.FileHandler(filename=f"../../results/{metric}_record.txt") file_handler.setFormatter(logging.Formatter("%(asctime)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")) logger.addHandler(file_handler) # Stream handler for displaying logs in the terminal stream_handler = logging.StreamHandler() stream_handler.setFormatter(logging.Formatter("%(asctime)s %(message)s", datefmt="%Y-%m-%d %H:%M:%S")) logger.addHandler(stream_handler) # Load pretrained models device = "cuda" if torch.cuda.is_available() else "cpu" if metric == 'blip_bleu': blip2_processor = AutoProcessor.from_pretrained("../../checkpoints/blip2-opt-2.7b") blip2_model = Blip2ForConditionalGeneration.from_pretrained("../../checkpoints/blip2-opt-2.7b", torch_dtype=torch.float16).to(device) elif metric == 'sd_score': clip_model = CLIPModel.from_pretrained("../../checkpoints/clip-vit-base-patch32").to(device) clip_tokenizer = AutoTokenizer.from_pretrained("../../checkpoints/clip-vit-base-patch32") output_dir = "/apdcephfs/share_1290939/raphaelliu/Vid_Eval/Video_Gen/prompt700-release/SDXL_Imgs" SD_image_path = os.path.join(output_dir, f"{os.path.basename(os.path.basename(video_paths[0]).split('.')[0])}_0.png") # if os.path.exists(SD_image_path): # pipe = None # else: pipe = StableDiffusionXLPipeline.from_pretrained( "../../checkpoints/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16) pipe = pipe.to(device) else: clip_model = CLIPModel.from_pretrained("../../checkpoints/clip-vit-base-patch32").to(device) clip_tokenizer = AutoTokenizer.from_pretrained("../../checkpoints/clip-vit-base-patch32") # Calculate SD scores for all video-text pairs scores = [] test_num = 10 test_num = len(video_paths) count = 0 for i in tqdm(range(len(video_paths))): video_path = video_paths[i] prompt_path = prompt_paths[i] if count == test_num: break else: text = read_text_file(prompt_path) # ipdb.set_trace() if metric == 'clip_score': score = calculate_clip_score(video_path, text, clip_model, clip_tokenizer) elif metric == 'blip_bleu': score = calculate_blip_bleu(video_path, text, blip2_model, blip2_processor) elif metric == 'sd_score': score = calculate_sd_score(video_path, text, pipe,clip_model) elif metric == 'clip_temp_score': score = calculate_clip_temp_score(video_path,clip_model) elif metric == 'face_consistency_score': score = calculate_face_consistency_score(video_path,clip_model) count+=1 scores.append(score) average_score = sum(scores) / len(scores) # count+=1 logging.info(f"Vid: {os.path.basename(video_path)}, Current {metric}: {score}, Current avg. {metric}: {average_score}, ") # Calculate the average SD score across all video-text pairs logging.info(f"Final average {metric}: {average_score}, Total videos: {len(scores)}")