import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoModelForSeq2SeqLM, AutoTokenizer """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # Load the model and tokenizer model_name = "vennify/t5-base-grammar-correction" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def correct_text(text, max_length, max_new_tokens, min_length, num_beams, temperature, top_p): inputs = tokenizer.encode("grammar: " + text, return_tensors="pt") if max_new_tokens > 0: outputs = model.generate( inputs, max_length=max_length, max_new_tokens=max_new_tokens, min_length=min_length, num_beams=num_beams, temperature=temperature, top_p=top_p, early_stopping=True ) else: outputs = model.generate( inputs, max_length=max_length, min_length=min_length, num_beams=num_beams, temperature=temperature, top_p=top_p, early_stopping=True ) corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return corrected_text def respond(message, history, max_length, min_length, max_new_tokens, num_beams, temperature, top_p): response = correct_text(message, max_length, max_new_tokens, min_length, num_beams, temperature, top_p) yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( fn=respond, examples=[{"text": "hello"}, {"text": "hola"}, {"text": "merhaba"}], title="Echo Bot", additional_inputs=[ #gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=256, value=100, step=1, label="Max Length"), gr.Slider(minimum=1, maximum=256, value=0, step=1, label="Min Length"), gr.Slider(minimum=0, maximum=256, value=0, step=1, label="Max New Tokens (optional)"), gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Num Beams"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()