import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoModelForSeq2SeqLM, AutoTokenizer """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ #client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") #client = InferenceClient("vennify/t5-base-grammar-correction") #gr.load("models/vennify/t5-base-grammar-correction").launch() # Load the model and tokenizer model_name = "vennify/t5-base-grammar-correction" model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def correct_text(text, max_length, num_beams, temperature, top_p): inputs = tokenizer.encode(text, return_tensors="pt") outputs = model.generate( inputs, max_length=max_length, num_beams=num_beams, temperature=temperature, top_p=top_p, early_stopping=True ) corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return corrected_text def respond( message, history: list[tuple[str, str]], system_message, max_tokens, num_beams, temperature, top_p, ): #messages = [{"role": "system", "content": system_message}] #for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) #messages.append({"role": "user", "content": message}) response = correct_text(message, max_tokens, num_beams, temperature, top_p) yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Num Beams"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()