#!/usr/bin/env python from __future__ import annotations import functools import os import pickle import sys import gradio as gr import numpy as np import torch import torch.nn as nn from huggingface_hub import hf_hub_download sys.path.insert(0, 'StyleGAN-Human') TITLE = 'StyleGAN-Human' DESCRIPTION = '''This is an unofficial demo for https://github.com/stylegan-human/StyleGAN-Human. Related App: [StyleGAN-Human (Interpolation)](https://huggingface.co/spaces/hysts/StyleGAN-Human-Interpolation) ''' HF_TOKEN = os.getenv('HF_TOKEN') def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor: return torch.from_numpy(np.random.RandomState(seed).randn( 1, z_dim)).to(device).float() @torch.inference_mode() def generate_image(seed: int, truncation_psi: float, model: nn.Module, device: torch.device) -> np.ndarray: seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) z = generate_z(model.z_dim, seed, device) label = torch.zeros([1, model.c_dim], device=device) out = model(z, label, truncation_psi=truncation_psi, force_fp32=True) out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) return out[0].cpu().numpy() def load_model(file_name: str, device: torch.device) -> nn.Module: path = hf_hub_download('hysts/StyleGAN-Human', f'models/{file_name}', use_auth_token=HF_TOKEN) with open(path, 'rb') as f: model = pickle.load(f)['G_ema'] model.eval() model.to(device) with torch.inference_mode(): z = torch.zeros((1, model.z_dim)).to(device) label = torch.zeros([1, model.c_dim], device=device) model(z, label, force_fp32=True) return model device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') model = load_model('stylegan_human_v2_1024.pkl', device) func = functools.partial(generate_image, model=model, device=device) gr.Interface( fn=func, inputs=[ gr.Slider(label='Seed', minimum=0, maximum=100000, step=1, value=0), gr.Slider(label='Truncation psi', minimum=0, maximum=2, step=0.05, value=0.7), ], outputs=gr.Image(label='Output', type='numpy'), title=TITLE, description=DESCRIPTION, ).launch(show_api=False)