import gradio as gr
import pandas as pd
import os
import torch
import zipfile
import tempfile
import shutil
from bs4 import BeautifulSoup
from typing import List, TypedDict
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_nvidia_ai_endpoints import ChatNVIDIA
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_community.tools.tavily_search import TavilySearchResults
from langgraph.graph import END, StateGraph, START
import chromadb
import io
# Environment variables setup
os.environ["TAVILY_API_KEY"] = "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"
os.environ["LANGCHAIN_PROJECT"] = "RAG project"
class GradeDocuments(BaseModel):
"""Binary score for relevance check on retrieved documents."""
binary_score: str = Field(description="Documents are relevant to the question, 'yes' or 'no'")
class GraphState(TypedDict):
"""Represents the state of our graph."""
question: str
generation: str
decision: str
documents: List[str]
def process_documents(temp_dir):
"""Process documents from the extracted zip folder with enhanced error handling."""
d = {"chunk": [], "url": []}
# Debug information
print(f"Scanning directory: {temp_dir}")
file_count = 0
processed_count = 0
error_count = 0
# Recursively traverse the directory
for root, dirs, files in os.walk(temp_dir):
for file_name in files:
file_count += 1
file_path = os.path.join(root, file_name)
print(f"Processing file: {file_path}")
try:
# Try different encodings
encodings = ['utf-8', 'latin-1', 'cp1252']
content = None
for encoding in encodings:
try:
with open(file_path, 'r', encoding=encoding) as stream:
content = stream.read()
break
except UnicodeDecodeError:
continue
if content is None:
print(f"Failed to read file {file_path} with any encoding")
error_count += 1
continue
soup = BeautifulSoup(content, "html.parser")
title = soup.find("title")
title_text = title.string.replace(" | Dataiku", "") if title else "No Title"
main_content = soup.find("main")
text_content = main_content.get_text(strip=True) if main_content else soup.get_text(strip=True)
if not text_content.strip():
print(f"No content extracted from {file_path}")
error_count += 1
continue
full_content = f"{title_text}\n\n{text_content}"
d["chunk"].append(full_content)
d["url"].append("https://" + file_name.replace("=", "/"))
processed_count += 1
print(f"Successfully processed {file_path}")
except Exception as e:
print(f"Error processing file {file_path}: {str(e)}")
error_count += 1
continue
print(f"\nProcessing Summary:")
print(f"Total files found: {file_count}")
print(f"Successfully processed: {processed_count}")
print(f"Errors encountered: {error_count}")
if not d["chunk"]:
raise ValueError(f"No valid documents were processed. Processed {file_count} files with {error_count} errors.")
return pd.DataFrame(d)
def setup_rag_system(temp_dir):
"""Initialize the RAG system with the provided documents."""
# Initialize embedding model
model_name = "dunzhang/stella_en_1.5B_v5"
model_kwargs = {'trust_remote_code': 'True'}
embedding_model = HuggingFaceEmbeddings(
model_name=model_name,
show_progress=True,
model_kwargs=model_kwargs
)
# Process documents
df = process_documents(temp_dir)
if df.empty:
raise ValueError("No valid documents were processed")
df["chunk_id"] = range(len(df))
# Create documents list
list_of_documents = [
Document(
page_content=record['chunk'],
metadata={"source_url": record['url']}
)
for record in df[['chunk', 'url']].to_dict(orient='records')
]
# Setup vector store
ids = [str(i) for i in df['chunk_id'].to_list()]
client = chromadb.PersistentClient(path=tempfile.mkdtemp())
vector_store = Chroma(
client=client,
collection_name="rag-chroma",
embedding_function=embedding_model,
)
# Add documents in batches
batch_size = 100
for i in range(0, len(list_of_documents), batch_size):
end_idx = min(i + batch_size, len(list_of_documents))
vector_store.add_documents(
documents=list_of_documents[i:end_idx],
ids=ids[i:end_idx]
)
return vector_store
def create_workflow(vector_store):
"""Create the RAG workflow."""
retriever = vector_store.as_retriever(search_kwargs={"k": 7})
llm = ChatNVIDIA(model="meta/llama-3.3-70b-instruct", temperature=0)
rag_prompt = PromptTemplate.from_template(
"""You are an assistant for responding to Request For Proposal documents for a
bidder in the field of Data Science and Engineering. Use the following pieces
of retrieved context to respond to the requests. If you don't know the answer,
just say that you don't know. Provide detailed responses with specific examples
and capabilities where possible.
Question: {question}
Context: {context}
Answer:"""
)
def format_docs(result):
return "\n\n".join(doc.page_content for doc in result)
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| rag_prompt
| llm
| StrOutputParser()
)
return rag_chain
def preprocess_csv(csv_file):
"""Preprocess the CSV file to ensure proper format."""
try:
# First try reading as is
df = pd.read_csv(csv_file.name, encoding='latin-1')
# If there's only one column and no header
if len(df.columns) == 1 and df.columns[0] != 'requirement':
# Read again with no header and assign column name
df = pd.read_csv(csv_file.name, encoding='latin-1', header=None, names=['requirement'])
# If there's no 'requirement' column, assume first column is requirements
if 'requirement' not in df.columns:
df = df.rename(columns={df.columns[0]: 'requirement'})
return df
except Exception as e:
# If standard CSV reading fails, try reading as plain text
try:
with open(csv_file.name, 'r', encoding='latin-1') as f:
requirements = f.read().strip().split('\n')
return pd.DataFrame({'requirement': requirements})
except Exception as e2:
raise ValueError(f"Could not process CSV file: {str(e2)}")
def handle_upload(zip_file, csv_file, nvidia_api_key):
"""Handle file uploads and process requirements with enhanced error handling."""
try:
# Set the NVIDIA API key from user input
os.environ["NVIDIA_API_KEY"] = nvidia_api_key
# Create temporary directory
temp_dir = tempfile.mkdtemp()
print(f"Created temporary directory: {temp_dir}")
try:
# Extract zip file
print(f"Extracting ZIP file: {zip_file.name}")
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
zip_ref.extractall(temp_dir)
print(f"ZIP contents: {zip_ref.namelist()}")
# Process documents
print("Processing documents...")
df = process_documents(temp_dir)
print(f"Processed {len(df)} documents")
# Preprocess and read requirements CSV
print("Processing CSV file...")
requirements_df = preprocess_csv(csv_file)
print(f"Found {len(requirements_df)} requirements")
# Setup RAG system
print("Setting up RAG system...")
vector_store = setup_rag_system(temp_dir)
rag_chain = create_workflow(vector_store)
# Process requirements
results = []
for idx, req in enumerate(requirements_df['requirement'], 1):
print(f"Processing requirement {idx}/{len(requirements_df)}")
try:
response = rag_chain.invoke(req)
results.append({
'requirement': req,
'response': response
})
except Exception as e:
error_msg = f"Error processing requirement: {str(e)}"
print(error_msg)
results.append({
'requirement': req,
'response': error_msg
})
return pd.DataFrame(results)
finally:
# Cleanup
print(f"Cleaning up temporary directory: {temp_dir}")
shutil.rmtree(temp_dir)
except Exception as e:
error_msg = f"Processing error: {str(e)}"
print(error_msg)
return pd.DataFrame([{'error': error_msg}])
def main():
"""Main function to run the Gradio interface."""
iface = gr.Interface(
fn=handle_upload,
inputs=[
gr.File(label="Upload ZIP folder containing URLs", file_types=[".zip"]),
gr.File(label="Upload Requirements CSV", file_types=[".csv", ".txt"]),
gr.Textbox(label="Enter your NVIDIA API Key", type="password")
],
outputs=gr.Dataframe(),
title="RAG System for RFP Analysis",
description="""This agent helps you verify if a specific tool matches your project requirements by uploading your tool documentation and your CSV containing your requirements But first, visit NVIDIA LLaMA 3.3 70B and get your API key.
Upload a ZIP folder containing URL documents and a CSV file with requirements to analyze.
The CSV file should contain requirements either as a single column or with a 'requirement' column header.
Enter your NVIDIA API key to use the service.""",
examples=[],
cache_examples=False
)
iface.launch(share=True)
if __name__ == "__main__":
main()