import base64 import requests import gradio as gr import PyPDF2 import google.generativeai as genai from langchain.text_splitter import RecursiveCharacterTextSplitter from sentence_transformers import SentenceTransformer, util import numpy as np import os from langchain_community.tools.tavily_search import TavilySearchResults from langchain_core.documents import Document # Retrieve API keys from environment variables google_api_key = os.getenv("GOOGLE_API_KEY") tavily_api_key = os.getenv("TAVILY_API_KEY") # Configure Google Generative AI genai.configure(api_key=google_api_key) # Create the Gemini model generation_config = { "temperature": 0.7, "top_p": 0.95, "top_k": 64, "max_output_tokens": 65536, "response_mime_type": "text/plain", } model = genai.GenerativeModel( model_name="gemini-2.0-flash-thinking-exp-01-21", generation_config=generation_config, ) chat_session = model.start_chat(history=[]) # Function to extract text from a PDF def extract_text_from_pdf(file_path): try: with open(file_path, "rb") as file: reader = PyPDF2.PdfReader(file) text = "".join(page.extract_text() for page in reader.pages) return text except Exception as e: return f"Error extracting text from PDF: {e}" # Function to chunk the text def chunk_text(text, chunk_size=500, chunk_overlap=50): text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap, length_function=len ) chunks = text_splitter.split_text(text) return chunks # Function to embed the chunks def embed_chunks(chunks, model_name="all-MiniLM-L6-v2"): model = SentenceTransformer(model_name) embeddings = model.encode(chunks, convert_to_tensor=True) return embeddings, model # Function to retrieve relevant chunks def retrieve_relevant_chunks(query, chunks, embeddings, model, top_k=3): query_embedding = model.encode(query, convert_to_tensor=True) similarities = util.cos_sim(query_embedding, embeddings)[0] top_k = min(top_k, len(chunks)) top_indices = np.argsort(similarities.cpu().numpy())[-top_k:][::-1] relevant_chunks = [chunks[i] for i in top_indices] return relevant_chunks # Function to summarize the agreement using Gemini def summarize_agreement_with_gemini(text): try: # Create a prompt for summarization prompt = f"Summarize the following text in 3-5 sentences:\n\n{text}\n\nSummary:" # Send the prompt to the Gemini model response = chat_session.send_message(prompt) return response.text except Exception as e: return f"Error summarizing text with Gemini: {e}" # Configure Tavily API os.environ["TAVILY_API_KEY"] = tavily_api_key web_search_tool = TavilySearchResults(k=3) def generate_response_with_rag(query, pdf_path, state): if "chunks" not in state or "embeddings" not in state or "embedding_model" not in state: text = extract_text_from_pdf(pdf_path) chunks = chunk_text(text) embeddings, embedding_model = embed_chunks(chunks) state["chunks"] = chunks state["embeddings"] = embeddings state["embedding_model"] = embedding_model else: chunks = state["chunks"] embeddings = state["embeddings"] embedding_model = state["embedding_model"] # Retrieve relevant chunks based on the query relevant_chunks = retrieve_relevant_chunks(query, chunks, embeddings, embedding_model, top_k=5) # Combine the relevant chunks into a single context context = "\n\n".join(relevant_chunks) # Create a prompt that instructs the model to answer only from the context prompt = f""" You are a helpful assistant that answers questions based on the provided context. Use the context below to answer the question. If the context does not contain enough information to answer the question, respond with "I don't know." **Context:** {context} **Question:** {query} **Answer:** """ # Send the prompt to the Gemini model try: response = chat_session.send_message(prompt) initial_answer = response.text # Check if the initial answer is "I don't know" if "I don't know" in initial_answer or "i don't know" in initial_answer: docs = web_search_tool.invoke({"query": query}) web_results = "\n".join([d["content"] for d in docs]) web_results = Document(page_content=web_results) # Create a prompt that instructs the model to answer from the web search results web_prompt = f""" You are a helpful assistant that answers questions based on the provided context. The context below is from a web search. Use the context to answer the question. If the context does not contain enough information to answer the question, respond with "I don't know." **Context:** {web_results.page_content} **Question:** {query} **Answer:** """ web_response = chat_session.send_message(web_prompt) return f"{web_response.text}\n\n*Note: This answer is based on a web search.*" else: return initial_answer except Exception as e: return f"Error generating response: {e}" # Function to process the agreement def process_agreement(file, state): try: text = extract_text_from_pdf(file.name) if text.startswith("Error"): return text, {}, state # Use Gemini for summarization summary = summarize_agreement_with_gemini(text) if summary.startswith("Error"): return summary, {}, state return summary, {}, state except Exception as e: return f"Error: {e}", {}, state # Gradio interface def main_interface(file, question, state): if file is not None: state["file"] = file state["text"] = extract_text_from_pdf(file.name) state["chat_history"] = [] # Initialize chat history summary_output = "" chatbot_output = "" if "file" in state: summary_output, _, state = process_agreement(state["file"], state) if question: chatbot_output = generate_response_with_rag(question, state["file"].name, state) state["chat_history"].append((question, chatbot_output)) return summary_output, chatbot_output, state # CSS for styling css = """ .gradio-container { background-image: url('https://huggingface.co/spaces/Nadaazakaria/DocWise/resolve/main/DALL%C2%B7E%202025-01-26%2011.43.33%20-%20A%20futuristic%20and%20sleek%20magical%20animated%20GIF-style%20icon%20design%20for%20%27DocWise%27%2C%20representing%20knowledge%2C%20documents%2C%20and%20wisdom.%20The%20design%20includes%20a%20glow.jpg'); background-size: cover; background-position: center; background-repeat: no-repeat; } .gradio-container h1, .gradio-container .tabs > .tab-nav > .tab-button { color: #FFF5E1 !important; text-shadow: 0 0 5px rgba(255, 245, 225, 0.5); } .tabs { background-color: #f0f0f0 !important; border-radius: 10px !important; padding: 20px !important; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1) !important; } .tabs > .tab-nav { background-color: #e0e0e0 !important; border-radius: 5px !important; margin-bottom: 15px !important; } .tabs > .tab-nav > .tab-button { color: black !important; font-weight: bold !important; } .tabs > .tab-nav > .tab-button.selected { background-color: #d0d0d0 !important; color: black !important; } #process-button, #chatbot-button { background-color: white !important; color: black !important; border: 1px solid #ccc !important; padding: 10px 20px !important; border-radius: 5px !important; box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1) !important; transition: background-color 0.3s ease !important; } #process-button:hover, #chatbot-button:hover { background-color: #f0f0f0 !important; } """ # Gradio app with gr.Blocks(css=css) as app: gr.Markdown( """