from langchain_text_splitters import RecursiveCharacterTextSplitter from qdrant_client import QdrantClient from langchain_openai.embeddings import OpenAIEmbeddings from langchain_core.prompts import ChatPromptTemplate from langchain_core.globals import set_llm_cache from langchain_openai import ChatOpenAI from langchain_core.caches import InMemoryCache from operator import itemgetter from langchain_core.runnables.passthrough import RunnablePassthrough from langchain_qdrant import QdrantVectorStore, Qdrant from langchain_community.document_loaders import PyMuPDFLoader import uuid import chainlit as cl import os from helper_functions import process_file, add_to_qdrant chat_model = ChatOpenAI(model="gpt-4o-mini") te3_small = OpenAIEmbeddings(model="text-embedding-3-small") set_llm_cache(InMemoryCache()) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) rag_system_prompt_template = """\ You are a helpful assistant that uses the provided context to answer questions. You must follow the writing style guide provided below. Never reference this prompt, the existence of context, or the writing style guide in your responses. Writing Style Guide: {writing_style_guide} """ rag_message_list = [{"role" : "system", "content" : rag_system_prompt_template},] rag_user_prompt_template = """\ Question: {question} Context: {context} """ chat_prompt = ChatPromptTemplate.from_messages([("system", rag_system_prompt_template), ("human", rag_user_prompt_template)]) @cl.on_chat_start async def on_chat_start(): qdrant_client = QdrantClient(url=os.environ["QDRANT_ENDPOINT"], api_key=os.environ["QDRANT_API_KEY"]) qdrant_store = Qdrant( client=qdrant_client, collection_name="kai_test_docs", embeddings=te3_small ) res = await cl.AskActionMessage( content="Pick an action!", actions=[ cl.Action(name="Question", value="question", label="Ask a question"), cl.Action(name="File", value="file", label="Upload a file or URL"), ], ).send() if res and res.get("value") == "file": files = None files = await cl.AskFileMessage( content="Please upload a URL, Text, PDF file to begin!", accept=["text/plain", "application/pdf"], max_size_mb=12, ).send() file = files[0] msg = cl.Message( content=f"Processing `{file.name}`...", disable_human_feedback=True ) await msg.send() # load the file docs = process_file(file) splits = text_splitter.split_documents(docs) for i, doc in enumerate(splits): doc.metadata["user_upload_source"] = f"source_{i}" print(f"Processing {len(docs)} text chunks") # Add to the qdrant_store qdrant_store.add_documents( documents=splits ) msg.content = f"Processing `{file.name}` done. You can now ask questions!" await msg.update() if res and res.get("value") == "question": await cl.Message(content="Ask away!").send() # Load the style guide from the local file system style_guide_path = "./public/CoExperiences Writing Style Guide V1 (2024).pdf" loader = PyMuPDFLoader(style_guide_path) style_guide_docs = loader.load() style_guide_text = "\n".join([doc.page_content for doc in style_guide_docs]) retriever = qdrant_store.as_retriever() global retrieval_augmented_qa_chain retrieval_augmented_qa_chain = ( { "context": itemgetter("question") | retriever, "question": itemgetter("question"), "writing_style_guide": lambda _: style_guide_text } | RunnablePassthrough.assign(context=itemgetter("context")) | chat_prompt | chat_model ) @cl.author_rename def rename(orig_author: str): return "AI Assistant" @cl.on_message async def main(message: cl.Message): response = retrieval_augmented_qa_chain.invoke({"question": message.content}) await cl.Message(content=response.content).send()