import gradio as gr from transformers import AutoTokenizer, AutoModel import torch # Load the tokenizer model_name = "TuringsSolutions/LegalModelTest1" tokenizer = AutoTokenizer.from_pretrained(model_name) # Initialize the model model = AutoModel.from_pretrained(model_name) # Function to make predictions def predict(text): inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) return outputs.last_hidden_state.mean(dim=1).squeeze().tolist() # Create a Gradio interface iface = gr.Interface( fn=predict, inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text here..."), outputs="json", title="Legal Model Test", description="A model for analyzing legal documents." ) # Launch the interface if __name__ == "__main__": iface.launch()