File size: 3,853 Bytes
08db26d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import gradio as gr
import pandas as pd
from sentiment_analyser import RandomAnalyser, RoBERTaAnalyser, ChatGPTAnalyser
import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix


def plot_bar(value_counts):
    fig, ax = plt.subplots(figsize=(6, 6))
    value_counts.plot.barh(ax=ax)
    ax.bar_label(ax.containers[0])
    plt.title('Frequency of Predictions')
    return fig


def plot_confusion_matrix(y_pred, y_true):
    cm = confusion_matrix(y_true, y_pred, normalize='true')
    fig, ax = plt.subplots(figsize=(6, 6))
    disp = ConfusionMatrixDisplay(confusion_matrix=cm,
                                  display_labels=['negative', 'neutral', 'positive'])
    disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False)
    plt.title("Normalized Confusion Matrix")
    return fig


def classify(num: int):
    samples_df = df.sample(num)
    X = samples_df['Text'].tolist()
    y = samples_df['Label']
    roberta = MODEL_MAPPING[OUR_MODEL]
    y_pred = pd.Series(roberta.predict(X), index=samples_df.index)
    samples_df['Predict'] = y_pred
    bar = plot_bar(y_pred.value_counts())
    cm = plot_confusion_matrix(y_pred, y)
    return samples_df, bar, cm


def analysis(Text):
    keys = []
    values = []
    for name, model in MODEL_MAPPING.items():
        keys.append(name)
        values.append(SENTI_MAPPING[model.predict([Text])[0]])
    return pd.DataFrame([values], columns=keys)


MODEL_MAPPING = {
    'Random': RandomAnalyser(),
    'RoBERTa': RoBERTaAnalyser(),
    'ChatGPT': ChatGPTAnalyser(),
}

OUR_MODEL = 'RoBERTa'

SENTI_MAPPING = {
    'negative': '😭',
    'neutral': '😶',
    'positive': '🥰'
}

TITLE = "Sentiment Analysis on Software Engineer Texts"
DESCRIPTION = (
    "这里是第16组“睿王和他的五个小跟班”软工三迭代三模型演示页面。"
    "模型链接:[Cloudy1225/stackoverflow-roberta-base-sentiment]"
    "(https://huggingface.co/Cloudy1225/stackoverflow-roberta-base-sentiment) "
)

MAX_SAMPLES = 64

df = pd.read_csv('./SOF4423.csv')

with gr.Blocks(title=TITLE) as demo:
    gr.HTML(f"<H1>{TITLE}</H1>")
    gr.Markdown(DESCRIPTION)
    gr.HTML("<H2>Model Inference</H2>")
    gr.Markdown((
        "在左侧文本框中输入文本并按回车键,右侧将输出情感分析结果。"
        "这里我们展示了三种结果,分别是随机结果、模型结果和 ChatGPT 结果。"
    ))
    with gr.Row():
        with gr.Column():
            text_input = gr.Textbox(label='Input',
                                    placeholder="Enter a positive or negative sentence here...")
        with gr.Column():
            senti_output = gr.Dataframe(type="pandas", value=[['😋', '😋', '😋']],
                                        headers=list(MODEL_MAPPING.keys()), interactive=False)
    text_input.submit(analysis, inputs=text_input, outputs=senti_output, show_progress=True)

    gr.HTML("<H2>Model Evaluation</H2>")
    gr.Markdown((
        "这里是在 StackOverflow4423 数据集上评估我们的模型。"
        "滑动 Slider,将会从 StackOverflow4423 数据集中抽样出指定数量的样本,预测其情感标签。"
        "并根据预测结果绘制标签分布图和混淆矩阵。"
    ))
    input_models = list(MODEL_MAPPING)
    input_n_samples = gr.Slider(
        minimum=4,
        maximum=MAX_SAMPLES,
        value=8,
        step=4,
        label='Number of samples'
    )

    with gr.Row():
        with gr.Column():
            bar_plot = gr.Plot(label='Predictions Frequency')
        with gr.Column():
            cm_plot = gr.Plot(label='Confusion Matrix')

    with gr.Row():
        dataframe = gr.Dataframe(type="pandas", wrap=True)

    input_n_samples.change(fn=classify, inputs=input_n_samples, outputs=[dataframe, bar_plot, cm_plot])

demo.launch()