from fastapi import FastAPI, File, UploadFile from fastapi.middleware.cors import CORSMiddleware import tensorflow as tf import numpy as np import google.generativeai as genai import os app = FastAPI() # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Configure Gemini API GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', 'AIzaSyBx0A7BA-nKVZOiVn39JXzdGKgeGQqwAFg') genai.configure(api_key=GEMINI_API_KEY) gemini_model = genai.GenerativeModel('gemini-pro') # Load model with specific version handling model = tf.keras.models.load_model( 'Image_classify.keras', custom_objects=None, compile=False # Don't compile the model on load ) # Define categories and image dimensions data_cat = ['disposable cups', 'paper', 'plastic bottle'] img_height, img_width = 224, 224 def generate_recycling_insight(detected_object): """Generate sustainability insights for detected objects""" try: prompt = f""" You are a sustainability-focused AI. Analyze the {detected_object} (which is a solid dry waste) and generate the top three innovative, eco-friendly recommendations for repurposing it. Ensure each recommendation is: - Give the Title of the recommendation - Practical and easy to implement - Environmentally beneficial - Clearly explained in one or two concise sentences """ response = gemini_model.generate_content(prompt) return response.text.strip() except Exception as e: return f"Error generating insight: {str(e)}" @app.post("/predict") async def predict(file: UploadFile = File(...)): try: # Read and preprocess the image contents = await file.read() image = tf.image.decode_image(contents, channels=3) image = tf.image.resize(image, [img_height, img_width]) image = tf.cast(image, tf.float32) image = tf.expand_dims(image, 0) # Make prediction predictions = model.predict(image, verbose=0) score = tf.nn.softmax(predictions[0]) confidence = float(np.max(score) * 100) if confidence < 45: return { "error": "Confidence too low to make a prediction", "confidence": confidence } predicted_class = data_cat[np.argmax(score)] sustainability_insight = generate_recycling_insight(predicted_class) return { "class": predicted_class, "confidence": confidence, "insights": sustainability_insight } except Exception as e: return {"error": str(e)} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)