Spaces:
Sleeping
Sleeping
Update app_phi2.py
Browse files- app_phi2.py +42 -17
app_phi2.py
CHANGED
@@ -12,6 +12,14 @@ from model import RNN_model
|
|
12 |
from timeit import default_timer as timer
|
13 |
from typing import Tuple, Dict
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# Import data
|
16 |
df= pd.read_csv('Symptom2Disease.csv')
|
17 |
df.drop('Unnamed: 0', axis= 1, inplace= True)
|
@@ -47,17 +55,32 @@ class_names= {0: 'Acne',
|
|
47 |
23: 'urinary tract infection'
|
48 |
}
|
49 |
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
#
|
58 |
-
model
|
59 |
-
|
60 |
-
|
|
|
|
|
61 |
# Disease Advice
|
62 |
disease_advice = {
|
63 |
'Acne': "Maintain a proper skincare routine, avoid excessive touching of the affected areas, and consider using over-the-counter topical treatments. If severe, consult a dermatologist.",
|
@@ -174,17 +197,19 @@ with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;}
|
|
174 |
elif message.lower() in goodbyes:
|
175 |
bot_message= random.choice(goodbye_replies)
|
176 |
else:
|
|
|
|
|
177 |
#bot_message= random.choice(goodbye_replies)
|
178 |
-
|
179 |
-
transform_text= vectorizer.transform([message])
|
180 |
-
transform_text= torch.tensor(transform_text.toarray()).to(torch.float32)
|
181 |
-
model.eval()
|
182 |
-
with torch.inference_mode():
|
183 |
-
|
184 |
-
|
185 |
|
186 |
-
test_pred= class_names[pred_prob.item()]
|
187 |
-
bot_message = f' Based on your symptoms, I believe you are having {test_pred} and I would advice you {disease_advice[test_pred]}'
|
188 |
chat_history.append((message, bot_message))
|
189 |
time.sleep(2)
|
190 |
return "", chat_history
|
|
|
12 |
from timeit import default_timer as timer
|
13 |
from typing import Tuple, Dict
|
14 |
|
15 |
+
import torch
|
16 |
+
from transformers import AutoModel, AutoTokenizer
|
17 |
+
|
18 |
+
# 导入预训练模型和分词器
|
19 |
+
model_name = "microsoft/phi2-base"
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
+
model = AutoModel.from_pretrained(model_name)
|
22 |
+
|
23 |
# Import data
|
24 |
df= pd.read_csv('Symptom2Disease.csv')
|
25 |
df.drop('Unnamed: 0', axis= 1, inplace= True)
|
|
|
55 |
23: 'urinary tract infection'
|
56 |
}
|
57 |
|
58 |
+
# 数据预处理
|
59 |
+
def preprocess(text):
|
60 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
61 |
+
return inputs
|
62 |
|
63 |
+
# 模型预测逻辑
|
64 |
+
def get_prediction(inputs):
|
65 |
+
model.eval()
|
66 |
+
with torch.no_grad():
|
67 |
+
outputs = model(**inputs)
|
68 |
+
logits = outputs.last_hidden_state[:, 0, :] # 取CLS标记的输出进行分类
|
69 |
+
pred_prob = torch.softmax(logits, dim=1)
|
70 |
+
pred = torch.argmax(pred_prob, dim=1)
|
71 |
+
return class_names[pred.item()]
|
72 |
|
73 |
+
# vectorizer= nltk_u.vectorizer()
|
74 |
+
# vectorizer.fit(train_data.text)
|
75 |
|
76 |
+
|
77 |
+
|
78 |
+
# # Model and transforms preparation
|
79 |
+
# model= RNN_model()
|
80 |
+
# # Load state dict
|
81 |
+
# model.load_state_dict(torch.load(
|
82 |
+
# f= 'pretrained_symtom_to_disease_model.pth',
|
83 |
+
# map_location= torch.device('cpu')))
|
84 |
# Disease Advice
|
85 |
disease_advice = {
|
86 |
'Acne': "Maintain a proper skincare routine, avoid excessive touching of the affected areas, and consider using over-the-counter topical treatments. If severe, consult a dermatologist.",
|
|
|
197 |
elif message.lower() in goodbyes:
|
198 |
bot_message= random.choice(goodbye_replies)
|
199 |
else:
|
200 |
+
inputs = preprocess(message)
|
201 |
+
bot_message = f"Based on your symptoms, I believe you may have {get_prediction(inputs)}."
|
202 |
#bot_message= random.choice(goodbye_replies)
|
203 |
+
|
204 |
+
# transform_text= vectorizer.transform([message])
|
205 |
+
# transform_text= torch.tensor(transform_text.toarray()).to(torch.float32)
|
206 |
+
# model.eval()
|
207 |
+
# with torch.inference_mode():
|
208 |
+
# y_logits=model(transform_text)
|
209 |
+
# pred_prob= torch.argmax(torch.softmax(y_logits, dim=1), dim=1)
|
210 |
|
211 |
+
# test_pred= class_names[pred_prob.item()]
|
212 |
+
# bot_message = f' Based on your symptoms, I believe you are having {test_pred} and I would advice you {disease_advice[test_pred]}'
|
213 |
chat_history.append((message, bot_message))
|
214 |
time.sleep(2)
|
215 |
return "", chat_history
|