import argparse import os import spaces import gradio as gr import json from threading import Thread import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MAX_LENGTH = 4096 DEFAULT_MAX_NEW_TOKENS = 1024 def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--base_model", type=str) # model path parser.add_argument("--n_gpus", type=int, default=1) # n_gpu return parser.parse_args() @spaces.GPU() def predict(message, history, system_prompt, temperature, max_tokens): global model, tokenizer, device instruction = "<|im_start|>system\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n<|im_end|>\n" for human, assistant in history: instruction += '<|im_start|>user\n' + human + '\n<|im_end|>\n<|im_start|>assistant\n' + assistant instruction += '\n<|im_start|>user\n' + message + '\n<|im_end|>\n<|im_start|>assistant\n' problem = [instruction] stop_tokens = ["<|endoftext|>", "<|im_end|>"] streamer = TextIteratorStreamer(tokenizer, timeout=100.0, skip_prompt=True, skip_special_tokens=True) enc = tokenizer(problem, return_tensors="pt", padding=True, truncation=True) input_ids = enc.input_ids attention_mask = enc.attention_mask if input_ids.shape[1] > MAX_LENGTH: input_ids = input_ids[:, -MAX_LENGTH:] input_ids = input_ids.to(device) attention_mask = attention_mask.to(device) generate_kwargs = dict( {"input_ids": input_ids, "attention_mask": attention_mask}, streamer=streamer, do_sample=True, top_p=0.95, temperature=0.5, max_new_tokens=DEFAULT_MAX_NEW_TOKENS, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) if text in stop_tokens: break print(text) yield "".join(outputs) if __name__ == "__main__": args = parse_args() tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-instruct-3b") model = AutoModelForCausalLM.from_pretrained("stabilityai/stable-code-instruct-3b", torch_dtype=torch.bfloat16) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = model.to(device) gr.ChatInterface( predict, title="Stable Code Instruct Chat - Demo", description="Chat Model Stable Code 3B", theme="soft", chatbot=gr.Chatbot(label="Chat History",), textbox=gr.Textbox(placeholder="input", container=False, scale=7), retry_btn=None, undo_btn="Delete Previous", clear_btn="Clear", additional_inputs=[ gr.Textbox("A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.", label="System Prompt"), gr.Slider(0, 1, 0.9, label="Temperature"), gr.Slider(100, 2048, 1024, label="Max Tokens"), ], additional_inputs_accordion_name="Parameters", ).queue().launch()