Circhastic
Version 1 hotfix #32 for merge
44ca278
raw
history blame
13.4 kB
import streamlit as st
import pandas as pd
import time
from datetime import datetime
import numpy as np
import pmdarima as pm
import matplotlib.pyplot as plt
from pmdarima import auto_arima
import plotly.graph_objects as go
import torch
from transformers import pipeline, TapasTokenizer, TapasForQuestionAnswering
st.set_page_config(
page_title="Sales Forecasting System",
page_icon="πŸ“ˆ",
layout="wide",
initial_sidebar_state="expanded",
)
# Preprocessing
@st.cache_data
def merge(B, C, A):
i = j = k = 0
# Convert 'Date' columns to datetime.date objects
B['Date'] = pd.to_datetime(B['Date']).dt.date
C['Date'] = pd.to_datetime(C['Date']).dt.date
A['Date'] = pd.to_datetime(A['Date']).dt.date
while i < len(B) and j < len(C):
if B['Date'].iloc[i] <= C['Date'].iloc[j]:
A['Date'].iloc[k] = B['Date'].iloc[i]
A['Sales'].iloc[k] = B['Sales'].iloc[i]
i += 1
else:
A['Date'].iloc[k] = C['Date'].iloc[j]
A['Sales'].iloc[k] = C['Sales'].iloc[j]
j += 1
k += 1
while i < len(B):
A['Date'].iloc[k] = B['Date'].iloc[i]
A['Sales'].iloc[k] = B['Sales'].iloc[i]
i += 1
k += 1
while j < len(C):
A['Date'].iloc[k] = C['Date'].iloc[j]
A['Sales'].iloc[k] = C['Sales'].iloc[j]
j += 1
k += 1
return A
@st.cache_data
def merge_sort(dataframe):
if len(dataframe) > 1:
center = len(dataframe) // 2
left = dataframe.iloc[:center]
right = dataframe.iloc[center:]
merge_sort(left)
merge_sort(right)
return merge(left, right, dataframe)
else:
return dataframe
@st.cache_data
def drop (dataframe):
def get_columns_containing(dataframe, substrings):
return [col for col in dataframe.columns if any(substring.lower() in col.lower() for substring in substrings)]
columns_to_keep = get_columns_containing(dataframe, ["date", "sale"])
dataframe = dataframe.drop(columns=dataframe.columns.difference(columns_to_keep))
dataframe = dataframe.dropna()
return dataframe
@st.cache_data
def date_format(dataframe):
for i, d, s in dataframe.itertuples():
dataframe['Date'][i] = dataframe['Date'][i].strip()
for i, d, s in dataframe.itertuples():
new_date = datetime.strptime(dataframe['Date'][i], "%m/%d/%Y").date()
dataframe['Date'][i] = new_date
return dataframe
@st.cache_data
def group_to_three(dataframe):
dataframe['Date'] = pd.to_datetime(dataframe['Date'])
dataframe = dataframe.groupby([pd.Grouper(key='Date', freq='3D')])['Sales'].mean().round(2)
dataframe = dataframe.replace(0, np.nan).dropna()
return dataframe
@st.cache_data
def series_to_df_exogenous(series):
dataframe = series.to_frame()
dataframe = dataframe.reset_index()
dataframe = dataframe.set_index('Date')
dataframe = dataframe.dropna()
# Create the eXogenous values
dataframe['Sales First Difference'] = dataframe['Sales'] - dataframe['Sales'].shift(1)
dataframe['Seasonal First Difference'] = dataframe['Sales'] - dataframe['Sales'].shift(12)
dataframe = dataframe.dropna()
return dataframe
@st.cache_data
def dates_df(dataframe):
dataframe = dataframe.reset_index()
dataframe['Date'] = dataframe['Date'].dt.strftime('%B %d, %Y')
dataframe[dataframe.columns] = dataframe[dataframe.columns].astype(str)
return dataframe
@st.cache_data
def get_forecast_period(period):
return round(period / 3)
# SARIMAX Model
@st.cache_data
def train_test(dataframe):
n = round(len(dataframe) * 0.2)
training_y = dataframe.iloc[:-n,0]
test_y = dataframe.iloc[-n:,0]
test_y_series = pd.Series(test_y, index=dataframe.iloc[-n:, 0].index)
training_X = dataframe.iloc[:-n,1:]
test_X = dataframe.iloc[-n:,1:]
future_X = dataframe.iloc[0:,1:]
return (training_y, test_y, test_y_series, training_X, test_X, future_X)
@st.cache_data
def test_fitting(dataframe, Exo, trainY):
trainTestModel = auto_arima(X = Exo, y = trainY, start_p=1, start_q=1,
test='adf',min_p=1,min_q=1,
max_p=3, max_q=3, m=12,
start_P=0, seasonal=True,
d=None, D=1, trace=True,
error_action='ignore',
suppress_warnings=True,
stepwise=True)
model = trainTestModel
return model
@st.cache_data
def forecast_accuracy(forecast, actual):
mape = np.mean(np.abs(forecast - actual)/np.abs(actual)).round(4) # MAPE
rmse = (np.mean((forecast - actual)**2)**.5).round(2) # RMSE
corr = np.corrcoef(forecast, actual)[0,1] # corr
mins = np.amin(np.hstack([forecast[:,None],
actual[:,None]]), axis=1)
maxs = np.amax(np.hstack([forecast[:,None],
actual[:,None]]), axis=1)
minmax = 1 - np.mean(mins/maxs) # minmax
return({'mape':mape, 'rmse':rmse, 'corr':corr, 'min-max':minmax})
@st.cache_data
def sales_growth(dataframe, fittedValues):
sales_growth = fittedValues.to_frame()
sales_growth = sales_growth.reset_index()
sales_growth.columns = ("Date", "Sales")
sales_growth = sales_growth.set_index('Date')
sales_growth['Sales'] = (sales_growth['Sales']).round(2)
# Calculate and create the column for sales difference and growth
sales_growth['Forecasted Sales First Difference']=(sales_growth['Sales']-sales_growth['Sales'].shift(1)).round(2)
sales_growth['Forecasted Sales Growth']=(((sales_growth['Sales']-sales_growth['Sales'].shift(1))/sales_growth['Sales'].shift(1))*100).round(2)
# Calculate and create the first row for sales difference and growth
sales_growth['Forecasted Sales First Difference'].iloc[0] = (dataframe['Sales'].iloc[-1]-dataframe['Sales'].iloc[-2]).round(2)
sales_growth['Forecasted Sales Growth'].iloc[0]=(((dataframe['Sales'].iloc[-1]-dataframe['Sales'].iloc[-2])/dataframe['Sales'].iloc[-1])*100).round(2)
return sales_growth
@st.cache_data
def merge_forecast_data(actual, predicted, future):
actual = actual.to_frame()
actual.rename(columns={actual.columns[0]: "Actual Sales"}, inplace=True)
predicted = predicted.to_frame()
predicted.rename(columns={predicted.columns[0]: "Predicted Sales"}, inplace=True)
future = future.to_frame()
future = future.rename_axis('Date')
future.rename(columns={future.columns[0]: "Forecasted Future Sales"}, inplace=True)
merged_dataframe = pd.concat([actual, predicted, future], axis=1)
merged_dataframe = merged_dataframe.reset_index()
return merged_dataframe
@st.cache_data
def interpret_mape(mape_score):
score = (mape_score * 100).round(2)
if score < 10:
interpretation = "Great"
elif score < 20:
interpretation = "Good"
elif score < 50:
interpretation = "Relatively good"
else:
interpretation = "Poor"
return score, interpretation
# TAPAS Model
@st.cache_resource
def load_tapas_model():
model_name = "google/tapas-large-finetuned-wtq"
tokenizer = TapasTokenizer.from_pretrained(model_name)
model = TapasForQuestionAnswering.from_pretrained(model_name, local_files_only=False)
pipe = pipeline("table-question-answering", model=model, tokenizer=tokenizer)
return pipe
pipe = load_tapas_model()
def get_answer(table, query):
answers = pipe(table=table, query=query)
return answers
def convert_answer(answer):
if answer['aggregator'] == 'SUM':
cells = answer['cells']
converted = sum(float(value.replace(',', '')) for value in cells)
return converted
if answer['aggregator'] == 'AVERAGE':
cells = answer['cells']
values = [float(value.replace(',', '')) for value in cells]
converted = sum(values) / len(values)
return converted
if answer['aggregator'] == 'COUNT':
cells = answer['cells']
converted = sum(int(value.replace(',', '')) for value in cells)
return converted
else:
return answer
def get_converted_answer(table, query):
converted_answer = convert_answer(get_answer(table, query))
return converted_answer
# Session States
if 'uploaded' not in st.session_state:
st.session_state.uploaded = False
if 'forecasted' not in st.session_state:
st.session_state.forecasted = False
# Web Application
st.title("Forecasting Dashboard πŸ“ˆ")
if not st.session_state.uploaded:
st.subheader("Welcome User, get started forecasting by uploading your file in the sidebar!")
# Sidebar Menu
with st.sidebar:
# TODO Name for product
st.title("MLCast v1.0")
st.subheader("An intelligent sales forecasting system")
uploaded_file = st.file_uploader("Upload your store data here to proceed (must atleast contain Date and Sales)", type=["csv"])
if uploaded_file is not None:
date_found = False
sales_found = False
df = pd.read_csv(uploaded_file, parse_dates=True)
for column in df.columns:
if 'Date' in column:
date_found = True
if 'Sales' in column:
sales_found = True
if(date_found == False or sales_found == False):
st.error('Please upload a csv containing both Date and Sales...')
st.stop()
st.success("File uploaded successfully!")
st.write("Your uploaded data:")
st.write(df)
df = drop(df)
df = date_format(df)
merge_sort(df)
series = group_to_three(df)
st.session_state.uploaded = True
with open('sample.csv', 'rb') as f:
st.download_button("Download our sample CSV", f, file_name='sample.csv')
if (st.session_state.uploaded):
st.subheader("Sales History")
st.line_chart(series)
MIN_DAYS = 30
MAX_DAYS = 90
period = st.slider('How many days would you like to forecast?', min_value=MIN_DAYS, max_value=MAX_DAYS)
forecast_period = get_forecast_period(period)
forecast_button = st.button(
'Start Forecasting',
key='forecast_button',
type="primary",
)
if (forecast_button or st.session_state.forecasted):
df = series_to_df_exogenous(series)
train = train_test(df)
training_y, test_y, test_y_series, training_X, test_X, future_X = train
train_test_model = test_fitting(df, training_X, training_y)
n_periods = round(len(df) * 0.2)
future_n_periods = forecast_period + n_periods
fitted, confint = train_test_model.predict(X=test_X, n_periods=n_periods, return_conf_int=True)
index_of_fc = test_y_series.index
# make series for plotting purpose
fitted_series = pd.Series(fitted)
fitted_series.index = index_of_fc
lower_series = pd.Series(confint[:, 0], index=index_of_fc)
upper_series = pd.Series(confint[:, 1], index=index_of_fc)
#Future predictions
frequency = '3D'
future_fitted, confint = train_test_model.predict(X=df.iloc[-future_n_periods:,1:], n_periods=future_n_periods, return_conf_int=True, freq=frequency)
future_index_of_fc = pd.date_range(df['Sales'].index[-1], periods = future_n_periods, freq=frequency)
# make series for future plotting purpose
future_fitted_series = pd.Series(future_fitted)
future_fitted_series.index = future_index_of_fc
future_lower_series = pd.Series(confint[:, 0], index=future_index_of_fc)
future_upper_series = pd.Series(confint[:, 1], index=future_index_of_fc)
future_sales_growth = sales_growth(df, future_fitted_series)
future_sales_growth = future_sales_growth.iloc[n_periods:]
df = dates_df(future_sales_growth)
test_y, predictions = np.array(test_y), np.array(fitted)
score = forecast_accuracy(predictions, test_y)
mape, interpretation = interpret_mape(score['mape'])
merged_data = merge_forecast_data(df['Sales'], fitted_series, future_fitted_series)
fig = go.Figure()
fig.add_trace(go.Scatter(x=merged_data[merged_data.columns[0]], y=merged_data['Actual Sales'], mode='lines', name='Actual Sales'))
fig.add_trace(go.Scatter(x=merged_data[merged_data.columns[0]], y=merged_data['Predicted Sales'], mode='lines', name='Predicted Sales'))
fig.add_trace(go.Scatter(x=merged_data[merged_data.columns[0]], y=merged_data['Forecasted Future Sales'], mode='lines', name='Forecasted Future Sales'))
fig.update_layout(title='Forecasted Sales Data', xaxis_title='Date', yaxis_title='Sales')
fig.update_xaxes(range=['2020-01-01', '2025-01-01']) # TODO: Change this to be adaptive
st.plotly_chart(fig, use_container_width=True)
st.write(f"MAPE score: {mape}% - {interpretation}")
col = st.columns(2)
with col[0]:
col[0].subheader(f"Forecasted sales in the next {period} days")
col[0].write(df)
with col[1]:
with col[1].form("question_form"):
question = col[1].text_input('Ask a Question about the Forecasted Data', placeholder="What is the total sales in the month of December?")
query_button = col[1].form_submit_button(label='Generate Answer')
if query_button or question:
answer = get_converted_answer(df, question)
if answer is not None:
col[1].subheader("The answer is:", answer)
else:
col[1].subheader("Answer is not found in table")
st.session_state.forecasted = True
# Hide Streamlit default style
hide_st_style = """
<style>
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_st_style, unsafe_allow_html=True)