import numpy as np from .init import pipe TASK = "transcribe" BATCH_SIZE = 16 class A2T: def __init__(self, mic): self.mic = mic def __transcribe(self, inputs, task: str = None): if inputs is None: print("Inputs None") transcribed_text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True) print("transcribed_text : ", transcribed_text) return transcribed_text["text"] def __preprocces(self, raw: np.ndarray): chunk = raw.astype(np.float32, order='C') / 32768.0 return chunk def predict(self): try: if self.mic is not None: chunk = self.mic.get_array_of_samples() chunk = np.array(chunk) audio = self.__preprocces(chunk) sampling_rate = self.mic.frame_rate print(f"audio : {audio} \n frame_rate : {sampling_rate} shape : {audio.shape}") else: return "please provide audio" if isinstance(audio , np.ndarray): inputs = {"sampling_rate": 16_000, "raw": audio} return self.__transcribe(inputs=inputs, task=TASK) else: return "Audio is not np array" except Exception as e: print("Predict error", e) return "Oops some kinda error"