import librosa import torch from .init import processor, model LIMIT = 90 # limit 90 seconds class A2T: def __init__(self, mic): print(type(mic.export().read())) self.mic = mic.export().read() def __preprocces(self, audio, frame_rate): try: audio = audio / 32678.0 if len(audio.shape) > 1: audio = librosa.to_mono(audio.T) if frame_rate != 16_000: audio = librosa.resample(audio, orig_sr=frame_rate, target_sr=16000) audio = audio[:16_000*LIMIT] audio = torch.tensor(audio) return audio except Exception as e: print("Preprocces error", e) return None def predict(self): if self.mic is not None: audio = self.mic frame_rate = audio.frame_rate else: return "please provide audio" try: forced_decoder_ids = processor.get_decoder_prompt_ids(language="english", task="transcribe") audio = self.__preprocces(audio=audio, frame_rate=frame_rate) inputs = processor(audio=audio, sampling_rate=16000, return_tensors="pt") predicted_ids = model.generate(**inputs, max_length=400, forced_decoder_ids=forced_decoder_ids) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) return transcription[0] except Exception as e: print("Predict error", e) return "Oops some kinda error"