import gradio as gr from PIL import Image import os import torch import torch.nn.functional as F import torchvision.transforms as transforms import torchvision from ultralytics.utils.plotting import Annotator, colors import numpy as np import yaml from huggingface_hub import hf_hub_download from ultralytics import YOLO device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') model = YOLO('Models/best.pt') model = model.to(device) def load_img (filename): if isinstance(img,str): img = get_url_img(img) if img.startswith('http') else Image.open(img).convert('RGB') return img def process_img(image): with torch.no_grad(): result = model(source=image) lbel='' if len(result[0].boxes)>0: ann=Annotator(im=image) boxes=result[0].boxes for element in boxes: box=np.array(element.xyxy.cpu()).flatten() if element.cls[0].cpu().numpy()==2.0: lbel='car' clr=(0,255,0) if element.cls[0].cpu().numpy()==0.0: lbel='bicycle' clr=(255,0,0) if element.cls[0].cpu().numpy()==1.0: lbel='bus' clr=(0,0,255) if element.cls[0].cpu().numpy()==3.0: lbel='motorcycle' clr=(255,0,255) if element.cls[0].cpu().numpy()==4.0: lbel='person' clr=(255,128,0) if element.cls[0].cpu().numpy()==5.0: lbel='train' clr=(255,0,128) if element.cls[0].cpu().numpy()==6.0: lbel='truck' clr=(0,255,255) ann.box_label(box=box, label=lbel, color=clr) vis=ann.result() else: vis = image return vis title = "Efficient Hazy Vehicle Detection ✏️🚗🤗" description = ''' ## [Efficient Hazy Vehicle Detection](https://github.com/cidautai) [Paula Garrido Mellado](https://github.com/paugar5) Fundación Cidaut > **Disclaimer:** please remember this is not a product, thus, you will notice some limitations. **This demo expects an image with some degradations.** Due to the GPU memory limitations, the app might crash if you feed a high-resolution image (2K, 4K).
''' examples = [['examples/dusttornado.jpg'], ['examples/foggy.jpg'], ['examples/haze.jpg'], ["examples/mist.jpg"], ["examples/rain_storm.jpg"], ["examples/sand_storm.jpg"], ["examples/snow_storm.jpg"]] css = """ .image-frame img, .image-container img { width: auto; height: auto; max-width: none; } """ demo = gr.Interface( fn = process_img, inputs = [ gr.Image(type = 'pil', label = 'input') ], outputs = [gr.Image(type='pil', label = 'output')], title = title, description = description, examples = examples, css = css ) if __name__ == '__main__': demo.launch()