import hashlib import json import os import time import traceback import warnings from pathlib import Path import numpy as np import parselmouth import resampy import torch import torchcrepe import utils from modules.vocoders.nsf_hifigan import nsf_hifigan from utils.hparams import hparams from utils.pitch_utils import f0_to_coarse warnings.filterwarnings("ignore") class BinarizationError(Exception): pass def get_md5(content): return hashlib.new("md5", content).hexdigest() def read_temp(file_name): if not os.path.exists(file_name): with open(file_name, "w") as f: f.write(json.dumps({"info": "temp_dict"})) return {} else: try: with open(file_name, "r") as f: data = f.read() data_dict = json.loads(data) if os.path.getsize(file_name) > 50 * 1024 * 1024: f_name = file_name.split("/")[-1] print(f"clean {f_name}") for wav_hash in list(data_dict.keys()): if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600: del data_dict[wav_hash] except Exception as e: print(e) print(f"{file_name} error,auto rebuild file") data_dict = {"info": "temp_dict"} return data_dict def write_temp(file_name, data): with open(file_name, "w") as f: f.write(json.dumps(data)) f0_dict = read_temp("./infer_tools/f0_temp.json") def get_pitch_parselmouth(wav_data, mel, hparams): """ :param wav_data: [T] :param mel: [T, 80] :param hparams: :return: """ time_step = hparams['hop_size'] / hparams['audio_sample_rate'] f0_min = hparams['f0_min'] f0_max = hparams['f0_max'] f0 = parselmouth.Sound(wav_data, hparams['audio_sample_rate']).to_pitch_ac( time_step=time_step, voicing_threshold=0.6, pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency'] pad_size = (int(len(wav_data) // hparams['hop_size']) - len(f0) + 1) // 2 f0 = np.pad(f0, [[pad_size, len(mel) - len(f0) - pad_size]], mode='constant') pitch_coarse = f0_to_coarse(f0, hparams) return f0, pitch_coarse def get_pitch_crepe(wav_data, mel, hparams, threshold=0.05): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # device = torch.device("cuda") # crepe只支持16khz采样率,需要重采样 wav16k = resampy.resample(wav_data, hparams['audio_sample_rate'], 16000) wav16k_torch = torch.FloatTensor(wav16k).unsqueeze(0).to(device) # 频率范围 f0_min = hparams['f0_min'] f0_max = hparams['f0_max'] # 重采样后按照hopsize=80,也就是5ms一帧分析f0 f0, pd = torchcrepe.predict(wav16k_torch, 16000, 80, f0_min, f0_max, pad=True, model='full', batch_size=1024, device=device, return_periodicity=True) # 滤波,去掉静音,设置uv阈值,参考原仓库readme pd = torchcrepe.filter.median(pd, 3) pd = torchcrepe.threshold.Silence(-60.)(pd, wav16k_torch, 16000, 80) f0 = torchcrepe.threshold.At(threshold)(f0, pd) f0 = torchcrepe.filter.mean(f0, 3) # 将nan频率(uv部分)转换为0频率 f0 = torch.where(torch.isnan(f0), torch.full_like(f0, 0), f0) # 去掉0频率,并线性插值 nzindex = torch.nonzero(f0[0]).squeeze() f0 = torch.index_select(f0[0], dim=0, index=nzindex).cpu().numpy() time_org = 0.005 * nzindex.cpu().numpy() time_frame = np.arange(len(mel)) * hparams['hop_size'] / hparams['audio_sample_rate'] if f0.shape[0] == 0: f0 = torch.FloatTensor(time_frame.shape[0]).fill_(0) print('f0 all zero!') else: f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1]) pitch_coarse = f0_to_coarse(f0, hparams) return f0, pitch_coarse class File2Batch: ''' pipeline: file -> temporary_dict -> processed_input -> batch ''' @staticmethod def file2temporary_dict(raw_data_dir, ds_id): ''' read from file, store data in temporary dicts ''' raw_data_dir = Path(raw_data_dir) utterance_labels = [] utterance_labels.extend(list(raw_data_dir.rglob(f"*.wav"))) utterance_labels.extend(list(raw_data_dir.rglob(f"*.ogg"))) all_temp_dict = {} for utterance_label in utterance_labels: item_name = str(utterance_label) temp_dict = {'wav_fn': str(utterance_label), 'spk_id': ds_id} all_temp_dict[item_name] = temp_dict return all_temp_dict @staticmethod def temporary_dict2processed_input(item_name, temp_dict, encoder, infer=False, **kwargs): ''' process data in temporary_dicts ''' def get_pitch(wav, mel): # get ground truth f0 by self.get_pitch_algorithm global f0_dict use_crepe = hparams['use_crepe'] if not infer else kwargs['use_crepe'] if use_crepe: md5 = get_md5(wav) if infer and md5 in f0_dict.keys(): print("load temp crepe f0") gt_f0 = np.array(f0_dict[md5]["f0"]) coarse_f0 = np.array(f0_dict[md5]["coarse"]) else: torch.cuda.is_available() and torch.cuda.empty_cache() gt_f0, coarse_f0 = get_pitch_crepe(wav, mel, hparams, threshold=0.05) if infer: f0_dict[md5] = {"f0": gt_f0.tolist(), "coarse": coarse_f0.tolist(), "time": int(time.time())} write_temp("./infer_tools/f0_temp.json", f0_dict) else: gt_f0, coarse_f0 = get_pitch_parselmouth(wav, mel, hparams) if sum(gt_f0) == 0: raise BinarizationError("Empty **gt** f0") processed_input['f0'] = gt_f0 processed_input['pitch'] = coarse_f0 def get_align(mel, phone_encoded): mel2ph = np.zeros([mel.shape[0]], int) start_frame = 0 ph_durs = mel.shape[0] / phone_encoded.shape[0] for i_ph in range(phone_encoded.shape[0]): end_frame = int(i_ph * ph_durs + ph_durs + 0.5) mel2ph[start_frame:end_frame + 1] = i_ph + 1 start_frame = end_frame + 1 processed_input['mel2ph'] = mel2ph wav, mel = nsf_hifigan.wav2spec(temp_dict['wav_fn']) processed_input = { 'item_name': item_name, 'mel': mel, 'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0] } processed_input = {**temp_dict, **processed_input, 'spec_min': np.min(mel, axis=0), 'spec_max': np.max(mel, axis=0)} # merge two dicts try: get_pitch(wav, mel) try: hubert_encoded = processed_input['hubert'] = encoder.encode(temp_dict['wav_fn']) except: traceback.print_exc() raise Exception(f"hubert encode error") get_align(mel, hubert_encoded) except Exception as e: print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {temp_dict['wav_fn']}") return None if hparams['use_energy_embed']: max_frames = hparams['max_frames'] spec = torch.Tensor(processed_input['mel'])[:max_frames] processed_input['energy'] = (spec.exp() ** 2).sum(-1).sqrt() return processed_input @staticmethod def processed_input2batch(samples): ''' Args: samples: one batch of processed_input NOTE: the batch size is controlled by hparams['max_sentences'] ''' if len(samples) == 0: return {} id = torch.LongTensor([s['id'] for s in samples]) item_names = [s['item_name'] for s in samples] hubert = utils.collate_2d([s['hubert'] for s in samples], 0.0) f0 = utils.collate_1d([s['f0'] for s in samples], 0.0) pitch = utils.collate_1d([s['pitch'] for s in samples]) uv = utils.collate_1d([s['uv'] for s in samples]) mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) \ if samples[0]['mel2ph'] is not None else None mels = utils.collate_2d([s['mel'] for s in samples], 0.0) mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples]) batch = { 'id': id, 'item_name': item_names, 'nsamples': len(samples), 'hubert': hubert, 'mels': mels, 'mel_lengths': mel_lengths, 'mel2ph': mel2ph, 'pitch': pitch, 'f0': f0, 'uv': uv, } if hparams['use_energy_embed']: batch['energy'] = utils.collate_1d([s['energy'] for s in samples], 0.0) if hparams['use_spk_id']: spk_ids = torch.LongTensor([s['spk_id'] for s in samples]) batch['spk_ids'] = spk_ids return batch