import json import os import gradio as gr import time from pydantic import BaseModel, Field from typing import Any, Optional, Dict, List, Union from huggingface_hub import InferenceClient from langchain.llms.base import LLM, EmbeddingFunction, Embeddings from langchain.Images import Images from langchain.llms.base import LLM from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.Documents import Documents from langchain.vectorstores import Chroma from dotenv import load_dotenv from transformers import AutoTokenizer, AutoModel, Tool load_dotenv() path_work = "." hf_token = os.getenv("HF") class HuggingFaceInstructEmbeddings(EmbeddingFunction): def __init__(self, model_name: str, model_kwargs: Optional[Dict[str, Any]] = None): self.model = AutoModel.from_pretrained(model_name, **(model_kwargs or {})) self.tokenizer = AutoTokenizer.from_pretrained(model_name) def __call__(self, input: Union[Documents, Images]) -> Embeddings: if isinstance(input, Documents): texts = [doc.text for doc in input] embeddings = self._embed_text(texts) else: # Handle image embeddings if needed pass return embeddings def _embed_text(self, texts: List[str]) -> Embeddings: # Your existing logic for text embeddings using Hugging Face models... inputs = self.tokenizer(texts, return_tensors="pt", padding=True, truncation=True) with torch.no_grad(): outputs = self.model(**inputs) embeddings = outputs.last_hidden_state.mean(dim=1) # Adjust this based on your specific model return embeddings vectordb = Chroma( persist_directory=path_work + '/new_papers', embedding_function=HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"}) ) retriever = vectordb.as_retriever(search_kwargs={"k": 2})#5 class KwArgsModel(BaseModel): kwargs: Dict[str, Any] = Field(default_factory=dict) class CustomInferenceClient(LLM, KwArgsModel): model_name: str inference_client: InferenceClient def __init__(self, model_name: str, hf_token: str, kwargs: Optional[Dict[str, Any]] = None): inference_client = InferenceClient(model=model_name, token=hf_token) super().__init__( model_name=model_name, hf_token=hf_token, kwargs=kwargs, inference_client=inference_client ) def _call( self, prompt: str, stop: Optional[List[str]] = None ) -> str: if stop is not None: raise ValueError("stop kwargs are not permitted.") response_gen = self.inference_client.text_generation(prompt, **self.kwargs, stream=True) response = ''.join(response_gen) return response @property def _llm_type(self) -> str: return "custom" @property def _identifying_params(self) -> dict: return {"model_name": self.model_name} kwargs = {"max_new_tokens": 256, "temperature": 0.9, "top_p": 0.6, "repetition_penalty": 1.3, "do_sample": True} model_list = [ "meta-llama/Llama-2-13b-chat-hf", "HuggingFaceH4/zephyr-7b-alpha", "meta-llama/Llama-2-70b-chat-hf", "tiiuae/falcon-180B-chat" ] qa_chain = None def load_model(model_selected): global qa_chain model_name = model_selected llm = CustomInferenceClient(model_name=model_name, hf_token=hf_token, kwargs=kwargs) from langchain.chains import RetrievalQA qa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True, verbose=True, ) return qa_chain load_model("meta-llama/Llama-2-70b-chat-hf") ########## ##### ######### ### ### ### def predict(message, temperature=0.9, max_new_tokens=512, top_p=0.6, repetition_penalty=1.3): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) llm_response = qa_chain(message) res_result = llm_response['result'] res_relevant_doc = [source.metadata['source'] for source in llm_response["source_documents"]] response = f"{res_result}" + "\n\n" + "[Answer Source Documents (Ctrl + Click!)] :" + "\n" + f" \n {res_relevant_doc}" print("response: =====> \n", response, "\n\n") tokens = response.split('\n') token_list = [] for idx, token in enumerate(tokens): token_dict = {"id": idx + 1, "text": token} token_list.append(token_dict) response = {"data": {"token": token_list}} response = json.dumps(response, indent=4) response = json.loads(response) data_dict = response.get('data', {}) token_list = data_dict.get('token', []) partial_message = "" for token_entry in token_list: if token_entry: try: token_id = token_entry.get('id', None) token_text = token_entry.get('text', None) if token_text: for char in token_text: partial_message += char yield partial_message time.sleep(0.01) else: print(f"Warning ==> The key 'text' does not exist or is None in this token entry: {token_entry}") pass except KeyError as e: gr.Warning(f"KeyError: {e} occurred for token entry: {token_entry}") continue class TextGeneratorTool(Tool): name = "vector_retriever" description = "This tool searches in a vector store based on a given prompt." inputs = ["prompt"] outputs = ["generated_text"] def __init__(self): #self.retriever = db.as_retriever(search_kwargs={"k": 1}) pass # You might want to add some initialization logic here def __call__(self, prompt: str): result = predict(prompt, 0.9, 512, 0.6, 1.4) return result