import os import time import pdfplumber import docx import nltk import gradio as gr from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.embeddings import CohereEmbeddings from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import FAISS, Chroma from langchain_text_splitters import RecursiveCharacterTextSplitter, TokenTextSplitter from typing import List, Dict, Any import pandas as pd import numpy as np import re from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.stem import SnowballStemmer import jellyfish from gensim.models import Word2Vec from gensim.models.fasttext import FastText from collections import Counter from tokenizers import Tokenizer, models, trainers from tokenizers.models import WordLevel from tokenizers.trainers import WordLevelTrainer from tokenizers.pre_tokenizers import Whitespace import matplotlib.pyplot as plt import seaborn as sns from sklearn.manifold import TSNE from sklearn.metrics import silhouette_score from scipy.stats import spearmanr from functools import lru_cache from langchain.retrievers import MultiQueryRetriever from langchain.llms import HuggingFacePipeline from transformers import pipeline # NLTK Resource Download def download_nltk_resources(): resources = ['punkt', 'stopwords', 'snowball_data'] for resource in resources: try: nltk.download(resource, quiet=True) except Exception as e: print(f"Failed to download {resource}: {str(e)}") download_nltk_resources() FILES_DIR = './files' # Model Management class ModelManager: def __init__(self): self.models = { 'HuggingFace': { 'e5-base-de': "danielheinz/e5-base-sts-en-de", 'paraphrase-miniLM': "paraphrase-multilingual-MiniLM-L12-v2", 'paraphrase-mpnet': "paraphrase-multilingual-mpnet-base-v2", 'gte-large': "gte-large", 'gbert-base': "gbert-base" }, 'OpenAI': { 'text-embedding-ada-002': "text-embedding-ada-002" }, 'Cohere': { 'embed-multilingual-v2.0': "embed-multilingual-v2.0" } } def add_model(self, provider, name, model_path): if provider not in self.models: self.models[provider] = {} self.models[provider][name] = model_path def remove_model(self, provider, name): if provider in self.models and name in self.models[provider]: del self.models[provider][name] def get_model(self, provider, name): return self.models.get(provider, {}).get(name) def list_models(self): return {provider: list(models.keys()) for provider, models in self.models.items()} model_manager = ModelManager() # File Handling class FileHandler: @staticmethod def extract_text(file_path): ext = os.path.splitext(file_path)[-1].lower() if ext == '.pdf': return FileHandler._extract_from_pdf(file_path) elif ext == '.docx': return FileHandler._extract_from_docx(file_path) elif ext == '.txt': return FileHandler._extract_from_txt(file_path) else: raise ValueError(f"Unsupported file type: {ext}") @staticmethod def _extract_from_pdf(file_path): with pdfplumber.open(file_path) as pdf: return ' '.join([page.extract_text() for page in pdf.pages]) @staticmethod def _extract_from_docx(file_path): doc = docx.Document(file_path) return ' '.join([para.text for para in doc.paragraphs]) @staticmethod def _extract_from_txt(file_path): with open(file_path, 'r', encoding='utf-8') as f: return f.read() # Text Processing def simple_tokenize(text): return text.split() def preprocess_text(text, lang='german', apply_preprocessing=True): if not apply_preprocessing: return text text = text.lower() text = re.sub(r'[^a-zA-Z\s]', '', text) try: tokens = word_tokenize(text, language=lang) except LookupError: print(f"Warning: NLTK punkt tokenizer for {lang} not found. Using simple tokenization.") tokens = simple_tokenize(text) try: stop_words = set(stopwords.words(lang)) except LookupError: print(f"Warning: Stopwords for {lang} not found. Skipping stopword removal.") stop_words = set() tokens = [token for token in tokens if token not in stop_words] try: stemmer = SnowballStemmer(lang) tokens = [stemmer.stem(token) for token in tokens] except ValueError: print(f"Warning: SnowballStemmer for {lang} not available. Skipping stemming.") return ' '.join(tokens) def phonetic_match(text, query, method='levenshtein_distance', apply_phonetic=True): if not apply_phonetic: return 0 if method == 'levenshtein_distance': text_phonetic = jellyfish.soundex(text) query_phonetic = jellyfish.soundex(query) return jellyfish.levenshtein_distance(text_phonetic, query_phonetic) return 0 def optimize_query(query, llm_model): llm = HuggingFacePipeline.from_model_id( model_id=llm_model, task="text2text-generation", model_kwargs={"temperature": 0, "max_length": 64}, ) multi_query_retriever = MultiQueryRetriever.from_llm( retriever=get_retriever(vector_store, search_type, search_kwargs), llm=llm ) optimized_queries = multi_query_retriever.generate_queries(query) return optimized_queries def create_custom_embedding(texts, model_type='word2vec', vector_size=100, window=5, min_count=1): tokenized_texts = [text.split() for text in texts] if model_type == 'word2vec': model = Word2Vec(sentences=tokenized_texts, vector_size=vector_size, window=window, min_count=min_count, workers=4) elif model_type == 'fasttext': model = FastText(sentences=tokenized_texts, vector_size=vector_size, window=window, min_count=min_count, workers=4) else: raise ValueError("Unsupported model type") return model class CustomEmbeddings(HuggingFaceEmbeddings): def __init__(self, model_path): self.model = Word2Vec.load(model_path) # or FastText.load() for FastText models def embed_documents(self, texts): return [self.model.wv[text.split()] for text in texts] def embed_query(self, text): return self.model.wv[text.split()] # Custom Tokenizer def create_custom_tokenizer(file_path, model_type='WordLevel', vocab_size=10000, special_tokens=None): with open(file_path, 'r', encoding='utf-8') as f: text = f.read() if model_type == 'WordLevel': tokenizer = Tokenizer(WordLevel(unk_token="[UNK]")) elif model_type == 'BPE': tokenizer = Tokenizer(models.BPE(unk_token="[UNK]")) elif model_type == 'Unigram': tokenizer = Tokenizer(models.Unigram()) else: raise ValueError(f"Unsupported tokenizer model: {model_type}") tokenizer.pre_tokenizer = Whitespace() special_tokens = special_tokens or ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"] trainer = trainers.WordLevelTrainer(special_tokens=special_tokens, vocab_size=vocab_size) tokenizer.train_from_iterator([text], trainer) return tokenizer def custom_tokenize(text, tokenizer): return tokenizer.encode(text).tokens # Embedding and Vector Store @lru_cache(maxsize=None) def get_embedding_model(model_type, model_name): model_path = model_manager.get_model(model_type, model_name) if model_type == 'HuggingFace': return HuggingFaceEmbeddings(model_name=model_path) elif model_type == 'OpenAI': return OpenAIEmbeddings(model=model_path) elif model_type == 'Cohere': return CohereEmbeddings(model=model_path) else: raise ValueError(f"Unsupported model type: {model_type}") def get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators=None): if split_strategy == 'token': return TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap_size) elif split_strategy == 'recursive': return RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=overlap_size, separators=custom_separators or ["\n\n", "\n", " ", ""] ) else: raise ValueError(f"Unsupported split strategy: {split_strategy}") def get_vector_store(vector_store_type, chunks, embedding_model): chunks_tuple = tuple(chunks) return _create_vector_store(vector_store_type, chunks_tuple, embedding_model) def custom_similarity(query_embedding, doc_embedding, query, doc_text, phonetic_weight=0.3): embedding_sim = np.dot(query_embedding, doc_embedding) / (np.linalg.norm(query_embedding) * np.linalg.norm(doc_embedding)) phonetic_sim = phonetic_match(doc_text, query) combined_sim = (1 - phonetic_weight) * embedding_sim + phonetic_weight * phonetic_sim return combined_sim def _create_vector_store(vector_store_type, chunks_tuple, embedding_model): chunks = list(chunks_tuple) if vector_store_type == 'FAISS': return FAISS.from_texts(chunks, embedding_model) elif vector_store_type == 'Chroma': return Chroma.from_texts(chunks, embedding_model) else: raise ValueError(f"Unsupported vector store type: {vector_store_type}") def get_retriever(vector_store, search_type, search_kwargs): if search_type == 'similarity': return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs) elif search_type == 'mmr': return vector_store.as_retriever(search_type="mmr", search_kwargs=search_kwargs) elif search_type == 'custom': return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs) else: raise ValueError(f"Unsupported search type: {search_type}") # Main Processing Functions def process_files(file_path, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators, lang='german', custom_tokenizer_file=None, custom_tokenizer_model=None, custom_tokenizer_vocab_size=10000, custom_tokenizer_special_tokens=None): if file_path: text = FileHandler.extract_text(file_path) else: text = "" for file in os.listdir(FILES_DIR): file_path = os.path.join(FILES_DIR, file) text += FileHandler.extract_text(file_path) if custom_tokenizer_file: tokenizer = create_custom_tokenizer(custom_tokenizer_file, custom_tokenizer_model, custom_tokenizer_vocab_size, custom_tokenizer_special_tokens) text = ' '.join(custom_tokenize(text, tokenizer)) else: text = preprocess_text(text, lang) text_splitter = get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators) chunks = text_splitter.split_text(text) embedding_model = get_embedding_model(model_type, model_name) return chunks, embedding_model, len(text.split()) def search_embeddings(chunks, embedding_model, vector_store_type, search_type, query, top_k, lang='german', phonetic_weight=0.3): preprocessed_query = preprocess_text(query, lang) vector_store = get_vector_store(vector_store_type, chunks, embedding_model) retriever = get_retriever(vector_store, search_type, {"k": top_k}) start_time = time.time() results = retriever.invoke(preprocessed_query) def score_result(doc): similarity_score = vector_store.similarity_search_with_score(doc.page_content, k=1)[0][1] phonetic_score = phonetic_match(doc.page_content, query) return (1 - phonetic_weight) * similarity_score + phonetic_weight * phonetic_score results = sorted(results, key=score_result, reverse=True) end_time = time.time() embeddings = [] for doc in results: if hasattr(doc, 'embedding'): embeddings.append(doc.embedding) else: embeddings.append(None) results_df = pd.DataFrame({ 'content': [doc.page_content for doc in results], 'embedding': embeddings }) return results_df, end_time - start_time, vector_store, results # Evaluation Metrics # ... (previous code remains the same) def calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model, query, top_k): stats = { "num_results": len(results), "avg_content_length": np.mean([len(doc.page_content) for doc in results]) if results else 0, "search_time": search_time, "vector_store_size": vector_store._index.ntotal if hasattr(vector_store, '_index') else "N/A", "num_documents": len(vector_store.docstore._dict), "num_tokens": num_tokens, "embedding_vocab_size": embedding_model.client.get_vocab_size() if hasattr(embedding_model, 'client') and hasattr(embedding_model.client, 'get_vocab_size') else "N/A", "embedding_dimension": len(embedding_model.embed_query(query)), "top_k": top_k, } if len(results) > 1000: embeddings = [embedding_model.embed_query(doc.page_content) for doc in results] pairwise_similarities = np.inner(embeddings, embeddings) stats["result_diversity"] = 1 - np.mean(pairwise_similarities[np.triu_indices(len(embeddings), k=1)]) if len(embeddings) > 2: stats["silhouette_score"] = silhouette_score(embeddings, range(len(embeddings))) else: stats["silhouette_score"] = "N/A" else: stats["result_diversity"] = "N/A" stats["silhouette_score"] = "N/A" query_embedding = embedding_model.embed_query(query) result_embeddings = [embedding_model.embed_query(doc.page_content) for doc in results] similarities = [np.inner(query_embedding, emb) for emb in result_embeddings] rank_correlation, _ = spearmanr(similarities, range(len(similarities))) stats["rank_correlation"] = rank_correlation return stats # Visualization def visualize_results(results_df, stats_df): fig, axs = plt.subplots(2, 2, figsize=(20, 20)) sns.barplot(x='model', y='search_time', data=stats_df, ax=axs[0, 0]) axs[0, 0].set_title('Search Time by Model') axs[0, 0].set_xticklabels(axs[0, 0].get_xticklabels(), rotation=45, ha='right') sns.scatterplot(x='result_diversity', y='rank_correlation', hue='model', data=stats_df, ax=axs[0, 1]) axs[0, 1].set_title('Result Diversity vs. Rank Correlation') sns.boxplot(x='model', y='avg_content_length', data=stats_df, ax=axs[1, 0]) axs[1, 0].set_title('Distribution of Result Content Lengths') axs[1, 0].set_xticklabels(axs[1, 0].get_xticklabels(), rotation=45, ha='right') embeddings = np.array([embedding for embedding in results_df['embedding'] if isinstance(embedding, np.ndarray)]) if len(embeddings) > 1: tsne = TSNE(n_components=2, random_state=42) embeddings_2d = tsne.fit_transform(embeddings) sns.scatterplot(x=embeddings_2d[:, 0], y=embeddings_2d[:, 1], hue=results_df['model'][:len(embeddings)], ax=axs[1, 1]) axs[1, 1].set_title('t-SNE Visualization of Result Embeddings') else: axs[1, 1].text(0.5, 0.5, "Not enough data for t-SNE visualization", ha='center', va='center') plt.tight_layout() return fig def optimize_vocabulary(texts, vocab_size=10000, min_frequency=2): tokenizer = Tokenizer(models.BPE(unk_token="[UNK]")) word_freq = Counter(word for text in texts for word in text.split()) optimized_texts = [ ' '.join(word for word in text.split() if word_freq[word] >= min_frequency) for text in texts ] trainer = trainers.BpeTrainer(vocab_size=vocab_size, special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]) tokenizer.train_from_iterator(optimized_texts, trainer) return tokenizer, optimized_texts # New preprocessing function def optimize_query(query, llm): multi_query_retriever = MultiQueryRetriever.from_llm( retriever=get_retriever(vector_store, search_type, search_kwargs), llm=llm ) optimized_queries = multi_query_retriever.generate_queries(query) return optimized_queries # New postprocessing function def rerank_results(results, query, reranker): reranked_results = reranker.rerank(query, [doc.page_content for doc in results]) return reranked_results # Main Comparison Function def compare_embeddings(file, query, embedding_models, custom_embedding_model, split_strategy, chunk_size, overlap_size, custom_separators, vector_store_type, search_type, top_k, lang='german', apply_preprocessing=True, optimize_vocab=False, apply_phonetic=True, phonetic_weight=0.3, custom_tokenizer_file=None, custom_tokenizer_model=None, custom_tokenizer_vocab_size=10000, custom_tokenizer_special_tokens=None, use_query_optimization=False, query_optimization_model="google/flan-t5-base", use_reranking=False): all_results = [] all_stats = [] settings = { "split_strategy": split_strategy, "chunk_size": chunk_size, "overlap_size": overlap_size, "custom_separators": custom_separators, "vector_store_type": vector_store_type, "search_type": search_type, "top_k": top_k, "lang": lang, "optimize_vocab": optimize_vocab, "phonetic_weight": phonetic_weight, "use_query_optimization": use_query_optimization, "use_reranking": use_reranking } models = [model.strip().split(':') for model in embedding_models.split(',')] if custom_embedding_model: models.append(custom_embedding_model.strip().split(':')) for model_type, model_name in models: chunks, embedding_model, num_tokens = process_files( file.name if file else None, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators.split(',') if custom_separators else None, lang, apply_preprocessing, custom_tokenizer_file, custom_tokenizer_model, int(custom_tokenizer_vocab_size), custom_tokenizer_special_tokens.split(',') if custom_tokenizer_special_tokens else None ) if optimize_vocab: tokenizer, optimized_chunks = optimize_vocabulary(chunks) chunks = optimized_chunks if use_query_optimization: optimized_queries = optimize_query(query, query_optimization_model) query = " ".join(optimized_queries) results, search_time, vector_store, results_raw = search_embeddings( chunks, embedding_model, vector_store_type, search_type, query, top_k, lang, apply_phonetic, phonetic_weight ) if use_reranking: reranker = pipeline("text-classification", model="cross-encoder/ms-marco-MiniLM-L-12-v2") results_raw = rerank_results(results_raw, query, reranker) result_embeddings = [doc.metadata.get('embedding', None) for doc in results_raw] stats = calculate_statistics(results_raw, search_time, vector_store, num_tokens, embedding_model, query, top_k) stats["model"] = f"{model_type} - {model_name}" stats.update(settings) formatted_results = format_results(results_raw, stats) for i, result in enumerate(formatted_results): result['embedding'] = result_embeddings[i] all_results.extend(formatted_results) all_stats.append(stats) results_df = pd.DataFrame(all_results) stats_df = pd.DataFrame(all_stats) fig = visualize_results(results_df, stats_df) return results_df, stats_df, fig def format_results(results, stats): formatted_results = [] for doc in results: result = { "Model": stats["model"], "Content": doc.page_content, "Embedding": doc.embedding if hasattr(doc, 'embedding') else None, **doc.metadata, **{k: v for k, v in stats.items() if k not in ["model"]} } formatted_results.append(result) return formatted_results # Gradio Interface def launch_interface(share=True): with gr.Blocks() as iface: gr.Markdown("# Advanced Embedding Comparison Tool") with gr.Tab("Simple"): file_input = gr.File(label="Upload File (Optional)") query_input = gr.Textbox(label="Search Query") embedding_models_input = gr.CheckboxGroup( choices=[ "HuggingFace:paraphrase-miniLM", "HuggingFace:paraphrase-mpnet", "OpenAI:text-embedding-ada-002", "Cohere:embed-multilingual-v2.0" ], label="Embedding Models" ) top_k_input = gr.Slider(1, 10, step=1, value=5, label="Top K") with gr.Tab("Advanced"): custom_embedding_model_input = gr.Textbox(label="Custom Embedding Model (optional, format: type:name)") split_strategy_input = gr.Radio(choices=["token", "recursive"], label="Split Strategy", value="recursive") chunk_size_input = gr.Slider(100, 1000, step=100, value=500, label="Chunk Size") overlap_size_input = gr.Slider(0, 100, step=10, value=50, label="Overlap Size") custom_separators_input = gr.Textbox(label="Custom Split Separators (comma-separated, optional)") vector_store_type_input = gr.Radio(choices=["FAISS", "Chroma"], label="Vector Store Type", value="FAISS") search_type_input = gr.Radio(choices=["similarity", "mmr", "custom"], label="Search Type", value="similarity") lang_input = gr.Dropdown(choices=["german", "english", "french"], label="Language", value="german") with gr.Tab("Optional"): apply_preprocessing_input = gr.Checkbox(label="Apply Text Preprocessing", value=True) optimize_vocab_input = gr.Checkbox(label="Optimize Vocabulary", value=False) apply_phonetic_input = gr.Checkbox(label="Apply Phonetic Matching", value=True) phonetic_weight_input = gr.Slider(0, 1, step=0.1, value=0.3, label="Phonetic Matching Weight") custom_tokenizer_file_input = gr.File(label="Custom Tokenizer File (Optional)") custom_tokenizer_model_input = gr.Textbox(label="Custom Tokenizer Model (e.g., WordLevel, BPE, Unigram)") custom_tokenizer_vocab_size_input = gr.Textbox(label="Custom Tokenizer Vocab Size", value="10000") custom_tokenizer_special_tokens_input = gr.Textbox(label="Custom Tokenizer Special Tokens (comma-separated)") use_query_optimization_input = gr.Checkbox(label="Use Query Optimization", value=False) query_optimization_model_input = gr.Textbox(label="Query Optimization Model", value="google/flan-t5-base") use_reranking_input = gr.Checkbox(label="Use Reranking", value=False) results_output = gr.Dataframe(label="Results", interactive=False) stats_output = gr.Dataframe(label="Statistics", interactive=False) plot_output = gr.Plot(label="Visualizations") submit_button = gr.Button("Compare Embeddings") submit_button.click( fn=compare_embeddings, inputs=[ file_input, query_input, embedding_models_input, custom_embedding_model_input, split_strategy_input, chunk_size_input, overlap_size_input, custom_separators_input, vector_store_type_input, search_type_input, top_k_input, lang_input, apply_preprocessing_input, optimize_vocab_input, apply_phonetic_input, phonetic_weight_input, custom_tokenizer_file_input, custom_tokenizer_model_input, custom_tokenizer_vocab_size_input, custom_tokenizer_special_tokens_input, use_query_optimization_input, query_optimization_model_input, use_reranking_input ], outputs=[results_output, stats_output, plot_output] ) tutorial_md = """ # Advanced Embedding Comparison Tool Tutorial This tool allows you to compare different embedding models and retrieval strategies for document search and similarity matching. ## How to use: 1. Upload a file (optional) or use the default files in the system. 2. Enter a search query. 3. Enter embedding models as a comma-separated list (e.g., HuggingFace:paraphrase-miniLM,OpenAI:text-embedding-ada-002). 4. Set the number of top results to retrieve. 5. Optionally, specify advanced settings such as custom embedding models, text splitting strategies, and vector store types. 6. Choose whether to use optional features like vocabulary optimization, query optimization, or result reranking. 7. If you have a custom tokenizer, upload the file and specify its attributes. The tool will process your query and display results, statistics, and visualizations to help you compare the performance of different models and strategies. """ iface = gr.TabbedInterface( [iface, gr.Markdown(tutorial_md)], ["Embedding Comparison", "Tutorial"] ) iface.launch(share=share) if __name__ == "__main__": launch_interface()