import os import time import pdfplumber import docx import nltk import gradio as gr from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.embeddings import CohereEmbeddings from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import FAISS, Chroma from langchain_text_splitters import RecursiveCharacterTextSplitter, TokenTextSplitter from typing import List, Dict, Any import pandas as pd import numpy as np import re from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from nltk.stem import SnowballStemmer import jellyfish from gensim.models import Word2Vec from gensim.models.fasttext import FastText from collections import Counter from tokenizers import Tokenizer, models, trainers from tokenizers.models import WordLevel from tokenizers.trainers import WordLevelTrainer from tokenizers.pre_tokenizers import Whitespace import matplotlib.pyplot as plt import seaborn as sns from sklearn.manifold import TSNE from sklearn.metrics import silhouette_score from scipy.stats import spearmanr from functools import lru_cache # NLTK Resource Download def download_nltk_resources(): resources = ['punkt', 'stopwords', 'snowball_data'] for resource in resources: try: nltk.download(resource, quiet=True) except Exception as e: print(f"Failed to download {resource}: {str(e)}") download_nltk_resources() FILES_DIR = './files' # Model Management class ModelManager: def __init__(self): self.models = { 'HuggingFace': { 'e5-base-de': "danielheinz/e5-base-sts-en-de", 'paraphrase-miniLM': "paraphrase-multilingual-MiniLM-L12-v2", 'paraphrase-mpnet': "paraphrase-multilingual-mpnet-base-v2", 'gte-large': "gte-large", 'gbert-base': "gbert-base" }, 'OpenAI': { 'text-embedding-ada-002': "text-embedding-ada-002" }, 'Cohere': { 'embed-multilingual-v2.0': "embed-multilingual-v2.0" } } def add_model(self, provider, name, model_path): if provider not in self.models: self.models[provider] = {} self.models[provider][name] = model_path def remove_model(self, provider, name): if provider in self.models and name in self.models[provider]: del self.models[provider][name] def get_model(self, provider, name): return self.models.get(provider, {}).get(name) def list_models(self): return {provider: list(models.keys()) for provider, models in self.models.items()} model_manager = ModelManager() # File Handling class FileHandler: @staticmethod def extract_text(file_path): ext = os.path.splitext(file_path)[-1].lower() if ext == '.pdf': return FileHandler._extract_from_pdf(file_path) elif ext == '.docx': return FileHandler._extract_from_docx(file_path) elif ext == '.txt': return FileHandler._extract_from_txt(file_path) else: raise ValueError(f"Unsupported file type: {ext}") @staticmethod def _extract_from_pdf(file_path): with pdfplumber.open(file_path) as pdf: return ' '.join([page.extract_text() for page in pdf.pages]) @staticmethod def _extract_from_docx(file_path): doc = docx.Document(file_path) return ' '.join([para.text for para in doc.paragraphs]) @staticmethod def _extract_from_txt(file_path): with open(file_path, 'r', encoding='utf-8') as f: return f.read() # Text Processing def simple_tokenize(text): return text.split() def preprocess_text(text, lang='german'): text = text.lower() text = re.sub(r'[^a-zA-Z\s]', '', text) try: tokens = word_tokenize(text, language=lang) except LookupError: print(f"Warning: NLTK punkt tokenizer for {lang} not found. Using simple tokenization.") tokens = simple_tokenize(text) try: stop_words = set(stopwords.words(lang)) except LookupError: print(f"Warning: Stopwords for {lang} not found. Skipping stopword removal.") stop_words = set() tokens = [token for token in tokens if token not in stop_words] try: stemmer = SnowballStemmer(lang) tokens = [stemmer.stem(token) for token in tokens] except ValueError: print(f"Warning: SnowballStemmer for {lang} not available. Skipping stemming.") return ' '.join(tokens) def phonetic_match(text, query, method='levenshtein_distance'): if method == 'levenshtein_distance': text_phonetic = jellyfish.soundex(text) #query_phonetic = jellyfish.cologne_phonetic(query) query_phonetic = jellyfish.soundex(query) return jellyfish.levenshtein_distance(text_phonetic, query_phonetic) return 0 def create_custom_embedding(texts, model_type='word2vec', vector_size=100, window=5, min_count=1): # Tokenize the texts tokenized_texts = [text.split() for text in texts] if model_type == 'word2vec': model = Word2Vec(sentences=tokenized_texts, vector_size=vector_size, window=window, min_count=min_count, workers=4) elif model_type == 'fasttext': model = FastText(sentences=tokenized_texts, vector_size=vector_size, window=window, min_count=min_count, workers=4) else: raise ValueError("Unsupported model type") return model class CustomEmbeddings(HuggingFaceEmbeddings): def __init__(self, model_path): self.model = Word2Vec.load(model_path) # or FastText.load() for FastText models def embed_documents(self, texts): return [self.model.wv[text.split()] for text in texts] def embed_query(self, text): return self.model.wv[text.split()] # Custom Tokenizer def create_custom_tokenizer(file_path): with open(file_path, 'r', encoding='utf-8') as f: text = f.read() tokenizer = Tokenizer(WordLevel(unk_token="[UNK]")) tokenizer.pre_tokenizer = Whitespace() trainer = WordLevelTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]) tokenizer.train_from_iterator([text], trainer) return tokenizer def custom_tokenize(text, tokenizer): return tokenizer.encode(text).tokens # Embedding and Vector Store @lru_cache(maxsize=None) def get_embedding_model(model_type, model_name): model_path = model_manager.get_model(model_type, model_name) if model_type == 'HuggingFace': return HuggingFaceEmbeddings(model_name=model_path) elif model_type == 'OpenAI': return OpenAIEmbeddings(model=model_path) elif model_type == 'Cohere': return CohereEmbeddings(model=model_path) else: raise ValueError(f"Unsupported model type: {model_type}") def get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators=None): if split_strategy == 'token': return TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap_size) elif split_strategy == 'recursive': return RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=overlap_size, separators=custom_separators or ["\n\n", "\n", " ", ""] ) else: raise ValueError(f"Unsupported split strategy: {split_strategy}") def get_vector_store(vector_store_type, chunks, embedding_model): # Convert chunks to a tuple to make it hashable chunks_tuple = tuple(chunks) # Use a helper function for the actual vector store creation return _create_vector_store(vector_store_type, chunks_tuple, embedding_model) def _create_vector_store(vector_store_type, chunks_tuple, embedding_model): # Convert the tuple back to a list for use with the vector store chunks = list(chunks_tuple) if vector_store_type == 'FAISS': return FAISS.from_texts(chunks, embedding_model) elif vector_store_type == 'Chroma': return Chroma.from_texts(chunks, embedding_model) else: raise ValueError(f"Unsupported vector store type: {vector_store_type}") def get_retriever(vector_store, search_type, search_kwargs): if search_type == 'similarity': return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs) elif search_type == 'mmr': return vector_store.as_retriever(search_type="mmr", search_kwargs=search_kwargs) elif search_type == 'custom': # Implement custom retriever logic here pass else: raise ValueError(f"Unsupported search type: {search_type}") # Main Processing Functions def process_files(file_path, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators, lang='german', custom_tokenizer_file=None): if file_path: text = FileHandler.extract_text(file_path) else: text = "" for file in os.listdir(FILES_DIR): file_path = os.path.join(FILES_DIR, file) text += FileHandler.extract_text(file_path) if custom_tokenizer_file: tokenizer = create_custom_tokenizer(custom_tokenizer_file) text = ' '.join(custom_tokenize(text, tokenizer)) else: text = preprocess_text(text, lang) text_splitter = get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators) chunks = text_splitter.split_text(text) embedding_model = get_embedding_model(model_type, model_name) return chunks, embedding_model, len(text.split()) def search_embeddings(chunks, embedding_model, vector_store_type, search_type, query, top_k, lang='german', phonetic_weight=0.3): preprocessed_query = preprocess_text(query, lang) vector_store = get_vector_store(vector_store_type, chunks, embedding_model) retriever = get_retriever(vector_store, search_type, {"k": top_k}) start_time = time.time() results = retriever.invoke(preprocessed_query) def score_result(doc): similarity_score = vector_store.similarity_search_with_score(doc.page_content, k=1)[0][1] phonetic_score = phonetic_match(doc.page_content, query) return (1 - phonetic_weight) * similarity_score + phonetic_weight * phonetic_score results = sorted(results, key=score_result, reverse=True) end_time = time.time() # Check if embeddings are available embeddings = [] for doc in results: if hasattr(doc, 'embedding'): embeddings.append(doc.embedding) # Use the embedding if it exists else: embeddings.append(None) # Append None if embedding doesn't exist # Create a DataFrame with the results and embeddings results_df = pd.DataFrame({ 'content': [doc.page_content for doc in results], 'embedding': embeddings }) return results_df, end_time - start_time, vector_store, results # Evaluation Metrics def calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model, query, top_k): stats = { "num_results": len(results), # "avg_content_length": sum(len(doc.page_content) for doc in results) / len(results) if results else 0, "avg_content_length": np.mean([len(doc.page_content) for doc in results]) if results else 0, #"avg_content_length": np.mean([len(doc.page_content) for doc in results]) if not results.empty else 0, "search_time": search_time, "vector_store_size": vector_store._index.ntotal if hasattr(vector_store, '_index') else "N/A", "num_documents": len(vector_store.docstore._dict), "num_tokens": num_tokens, "embedding_vocab_size": embedding_model.client.get_vocab_size() if hasattr(embedding_model, 'client') and hasattr(embedding_model.client, 'get_vocab_size') else "N/A", "embedding_dimension": len(embedding_model.embed_query(query)), "top_k": top_k, } if len(results) > 1000: embeddings = [embedding_model.embed_query(doc.page_content) for doc in results] pairwise_similarities = np.inner(embeddings, embeddings) stats["result_diversity"] = 1 - np.mean(pairwise_similarities[np.triu_indices(len(embeddings), k=1)]) # Silhouette Score if len(embeddings) > 2: print('-----') #stats["silhouette_score"] = "N/A" stats["silhouette_score"] = silhouette_score(embeddings, range(len(embeddings))) else: stats["silhouette_score"] = "N/A" else: stats["result_diversity"] = "N/A" stats["silhouette_score"] = "N/A" query_embedding = embedding_model.embed_query(query) result_embeddings = [embedding_model.embed_query(doc.page_content) for doc in results] similarities = [np.inner(query_embedding, emb) for emb in result_embeddings] rank_correlation, _ = spearmanr(similarities, range(len(similarities))) stats["rank_correlation"] = rank_correlation return stats # Visualization def visualize_results(results_df, stats_df): fig, axs = plt.subplots(2, 2, figsize=(20, 20)) sns.barplot(x='model', y='search_time', data=stats_df, ax=axs[0, 0]) axs[0, 0].set_title('Search Time by Model') axs[0, 0].set_xticklabels(axs[0, 0].get_xticklabels(), rotation=45, ha='right') sns.scatterplot(x='result_diversity', y='rank_correlation', hue='model', data=stats_df, ax=axs[0, 1]) axs[0, 1].set_title('Result Diversity vs. Rank Correlation') sns.boxplot(x='model', y='avg_content_length', data=stats_df, ax=axs[1, 0]) axs[1, 0].set_title('Distribution of Result Content Lengths') axs[1, 0].set_xticklabels(axs[1, 0].get_xticklabels(), rotation=45, ha='right') embeddings = np.array([embedding for embedding in results_df['embedding'] if isinstance(embedding, np.ndarray)]) if len(embeddings) > 1: tsne = TSNE(n_components=2, random_state=42) embeddings_2d = tsne.fit_transform(embeddings) sns.scatterplot(x=embeddings_2d[:, 0], y=embeddings_2d[:, 1], hue=results_df['model'][:len(embeddings)], ax=axs[1, 1]) axs[1, 1].set_title('t-SNE Visualization of Result Embeddings') else: axs[1, 1].text(0.5, 0.5, "Not enough data for t-SNE visualization", ha='center', va='center') plt.tight_layout() return fig def optimize_vocabulary(texts, vocab_size=10000, min_frequency=2): tokenizer = Tokenizer(models.BPE(unk_token="[UNK]")) # Count word frequencies word_freq = Counter(word for text in texts for word in text.split()) # Remove rare words optimized_texts = [ ' '.join(word for word in text.split() if word_freq[word] >= min_frequency) for text in texts ] # Train BPE tokenizer # tokenizer = Tokenizer(BPE(unk_token="[UNK]")) trainer = trainers.BpeTrainer(vocab_size=vocab_size, special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"]) tokenizer.train_from_iterator(optimized_texts, trainer) return tokenizer, optimized_texts # Main Comparison Function def compare_embeddings(file, query, model_types, model_names, split_strategy, chunk_size, overlap_size, custom_separators, vector_store_type, search_type, top_k, lang='german', use_custom_embedding=False, optimize_vocab=False, phonetic_weight=0.3, custom_tokenizer_file=None): all_results = [] all_stats = [] settings = { "split_strategy": split_strategy, "chunk_size": chunk_size, "overlap_size": overlap_size, "custom_separators": custom_separators, "vector_store_type": vector_store_type, "search_type": search_type, "top_k": top_k, "lang": lang, "use_custom_embedding": use_custom_embedding, "optimize_vocab": optimize_vocab, "phonetic_weight": phonetic_weight } for model_type, model_name in zip(model_types, model_names): # Process the file and generate chunks & embeddings chunks, embedding_model, num_tokens = process_files( file.name if file else None, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators.split(',') if custom_separators else None, lang, custom_tokenizer_file ) # Custom embedding handling if use_custom_embedding: custom_model = create_custom_embedding(chunks) #add custom model by name, must com from gradio FE embedding_model = CustomEmbeddings(custom_model) # Optimizing vocabulary if required if optimize_vocab: tokenizer, optimized_chunks = optimize_vocabulary(chunks) chunks = optimized_chunks # Searching embeddings results, search_time, vector_store, results_raw = search_embeddings( chunks, embedding_model, vector_store_type, search_type, query, top_k, lang, phonetic_weight ) # Storing embeddings into the results for future use for doc in results_raw: print(doc) # or print(dir(doc)) to see available attributes #embedding = doc.metadata.get('embedding', None) # Use .get() to avoid KeyError result_embeddings = [doc.metadata.get('embedding', None) for doc in results_raw] # Adjust this based on the actual attribute names # result_embeddings = [doc['embedding'] for doc in results_raw] # Assuming each result has an embedding stats = calculate_statistics(results_raw, search_time, vector_store, num_tokens, embedding_model, query, top_k) stats["model"] = f"{model_type} - {model_name}" stats.update(settings) # Formatting results and attaching embeddings formatted_results = format_results(results_raw, stats) for i, result in enumerate(formatted_results): result['embedding'] = result_embeddings[i] # Add the embedding to each result all_results.extend(formatted_results) all_stats.append(stats) # Create DataFrames with embeddings now included results_df = pd.DataFrame(all_results) stats_df = pd.DataFrame(all_stats) # Visualization of the results fig = visualize_results(results_df, stats_df) return results_df, stats_df, fig def format_results(results, stats): formatted_results = [] for doc in results: result = { "Model": stats["model"], "Content": doc.page_content, "Embedding": doc.embedding if hasattr(doc, 'embedding') else None, **doc.metadata, **{k: v for k, v in stats.items() if k not in ["model"]} } formatted_results.append(result) return formatted_results # Gradio Interface def launch_interface(share=True): iface = gr.Interface( fn=compare_embeddings, inputs=[ gr.File(label="Upload File (Optional)"), gr.Textbox(label="Search Query"), gr.CheckboxGroup(choices=list(model_manager.list_models().keys()) + ["Custom"], label="Embedding Model Types"), gr.CheckboxGroup(choices=[model for models in model_manager.list_models().values() for model in models] + ["custom_model"], label="Embedding Models"), gr.Radio(choices=["token", "recursive"], label="Split Strategy", value="recursive"), gr.Slider(100, 1000, step=100, value=500, label="Chunk Size"), gr.Slider(0, 100, step=10, value=50, label="Overlap Size"), gr.Textbox(label="Custom Split Separators (comma-separated, optional)"), gr.Radio(choices=["FAISS", "Chroma"], label="Vector Store Type", value="FAISS"), gr.Radio(choices=["similarity", "mmr", "custom"], label="Search Type", value="similarity"), gr.Slider(1, 10, step=1, value=5, label="Top K"), gr.Dropdown(choices=["german", "english", "french"], label="Language", value="german"), gr.Checkbox(label="Use Custom Embedding", value=False), gr.Checkbox(label="Optimize Vocabulary", value=False), gr.Slider(0, 1, step=0.1, value=0.3, label="Phonetic Matching Weight"), gr.File(label="Custom Tokenizer File (Optional)") ], outputs=[ gr.Dataframe(label="Results", interactive=False), gr.Dataframe(label="Statistics", interactive=False), gr.Plot(label="Visualizations") ], title="Advanced Embedding Comparison Tool", description="Compare different embedding models and retrieval strategies with advanced preprocessing and phonetic matching" ) tutorial_md = """ # Advanced Embedding Comparison Tool Tutorial This tool allows you to compare different embedding models and retrieval strategies for document search and similarity matching. ## How to use: 1. Upload a file (optional) or use the default files in the system. 2. Enter a search query. 3. Select one or more embedding model types and specific models. 4. Choose a text splitting strategy and set chunk size and overlap. 5. Select a vector store type and search type. 6. Set the number of top results to retrieve. 7. Choose the language of your documents. 8. Optionally, use custom embeddings, optimize vocabulary, or adjust phonetic matching weight. 9. If you have a custom tokenizer, upload the file. The tool will process your query and display results, statistics, and visualizations to help you compare the performance of different models and strategies. """ iface = gr.TabbedInterface( [iface, gr.Markdown(tutorial_md)], ["Embedding Comparison", "Tutorial"] ) iface.launch(share=share) if __name__ == "__main__": launch_interface()