import os import time import pdfplumber import docx import nltk import gradio as gr from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.embeddings import ( OpenAIEmbeddings, CohereEmbeddings, ) from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import FAISS, Chroma from langchain_text_splitters import ( RecursiveCharacterTextSplitter, TokenTextSplitter, ) from typing import List, Dict, Any import pandas as pd nltk.download('punkt', quiet=True) FILES_DIR = './files' MODELS = { 'HuggingFace': { 'e5-base-de': "danielheinz/e5-base-sts-en-de", 'paraphrase-miniLM': "paraphrase-multilingual-MiniLM-L12-v2", 'paraphrase-mpnet': "paraphrase-multilingual-mpnet-base-v2", 'gte-large': "gte-large", 'gbert-base': "gbert-base" }, 'OpenAI': { 'text-embedding-ada-002': "text-embedding-ada-002" }, 'Cohere': { 'embed-multilingual-v2.0': "embed-multilingual-v2.0" } } class FileHandler: @staticmethod def extract_text(file_path): ext = os.path.splitext(file_path)[-1].lower() if ext == '.pdf': return FileHandler._extract_from_pdf(file_path) elif ext == '.docx': return FileHandler._extract_from_docx(file_path) elif ext == '.txt': return FileHandler._extract_from_txt(file_path) else: raise ValueError(f"Unsupported file type: {ext}") @staticmethod def _extract_from_pdf(file_path): with pdfplumber.open(file_path) as pdf: return ' '.join([page.extract_text() for page in pdf.pages]) @staticmethod def _extract_from_docx(file_path): doc = docx.Document(file_path) return ' '.join([para.text for para in doc.paragraphs]) @staticmethod def _extract_from_txt(file_path): with open(file_path, 'r', encoding='utf-8') as f: return f.read() def get_embedding_model(model_type, model_name): if model_type == 'HuggingFace': return HuggingFaceEmbeddings(model_name=MODELS[model_type][model_name]) elif model_type == 'OpenAI': return OpenAIEmbeddings(model=MODELS[model_type][model_name]) elif model_type == 'Cohere': return CohereEmbeddings(model=MODELS[model_type][model_name]) else: raise ValueError(f"Unsupported model type: {model_type}") def get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators=None): if split_strategy == 'token': return TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap_size) elif split_strategy == 'recursive': return RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=overlap_size, separators=custom_separators or ["\n\n", "\n", " ", ""] ) else: raise ValueError(f"Unsupported split strategy: {split_strategy}") def get_vector_store(store_type, texts, embedding_model): if store_type == 'FAISS': return FAISS.from_texts(texts, embedding_model) elif store_type == 'Chroma': return Chroma.from_texts(texts, embedding_model) else: raise ValueError(f"Unsupported vector store type: {store_type}") def get_retriever(vector_store, search_type, search_kwargs=None): if search_type == 'similarity': return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs) elif search_type == 'mmr': return vector_store.as_retriever(search_type="mmr", search_kwargs=search_kwargs) else: raise ValueError(f"Unsupported search type: {search_type}") def process_files(file_path, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators): if file_path: text = FileHandler.extract_text(file_path) else: text = "" for file in os.listdir(FILES_DIR): file_path = os.path.join(FILES_DIR, file) text += FileHandler.extract_text(file_path) text_splitter = get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators) chunks = text_splitter.split_text(text) embedding_model = get_embedding_model(model_type, model_name) return chunks, embedding_model, len(text.split()) def search_embeddings(chunks, embedding_model, vector_store_type, search_type, query, top_k): vector_store = get_vector_store(vector_store_type, chunks, embedding_model) retriever = get_retriever(vector_store, search_type, {"k": top_k}) start_time = time.time() results = retriever.get_relevant_documents(query) end_time = time.time() return results, end_time - start_time, vector_store def calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model): return { "num_results": len(results), "avg_content_length": sum(len(doc.page_content) for doc in results) / len(results) if results else 0, "search_time": search_time, "vector_store_size": vector_store._index.ntotal if hasattr(vector_store, '_index') else "N/A", "num_documents": len(vector_store.docstore._dict), "num_tokens": num_tokens, "embedding_vocab_size": embedding_model.client.get_vocab_size() if hasattr(embedding_model, 'client') and hasattr(embedding_model.client, 'get_vocab_size') else "N/A" } def compare_embeddings(file, query, model_types, model_names, split_strategy, chunk_size, overlap_size, custom_separators, vector_store_type, search_type, top_k): all_results = [] all_stats = [] settings = { "split_strategy": split_strategy, "chunk_size": chunk_size, "overlap_size": overlap_size, "custom_separators": custom_separators, "vector_store_type": vector_store_type, "search_type": search_type, "top_k": top_k } for model_type, model_name in zip(model_types, model_names): chunks, embedding_model, num_tokens = process_files( file.name if file else None, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators.split(',') if custom_separators else None ) results, search_time, vector_store = search_embeddings( chunks, embedding_model, vector_store_type, search_type, query, top_k ) stats = calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model) stats["model"] = f"{model_type} - {model_name}" stats.update(settings) formatted_results = format_results(results, stats) all_results.extend(formatted_results) all_stats.append(stats) results_df = pd.DataFrame(all_results) stats_df = pd.DataFrame(all_stats) return results_df, stats_df def format_results(results, stats): formatted_results = [] for doc in results: result = { "Model": stats["model"], "Content": doc.page_content, **doc.metadata, **{k: v for k, v in stats.items() if k not in ["model"]} } formatted_results.append(result) return formatted_results # Gradio interface def launch_interface(share=True): iface = gr.Interface( fn=compare_embeddings, inputs=[ gr.File(label="Upload File (Optional)"), gr.Textbox(label="Search Query"), gr.CheckboxGroup(choices=list(MODELS.keys()), label="Embedding Model Types", value=["HuggingFace"]), gr.CheckboxGroup(choices=[model for models in MODELS.values() for model in models], label="Embedding Models", value=["e5-base-de"]), gr.Radio(choices=["token", "recursive"], label="Split Strategy", value="recursive"), gr.Slider(100, 1000, step=100, value=500, label="Chunk Size"), gr.Slider(0, 100, step=10, value=50, label="Overlap Size"), gr.Textbox(label="Custom Split Separators (comma-separated, optional)"), gr.Radio(choices=["FAISS", "Chroma"], label="Vector Store Type", value="FAISS"), gr.Radio(choices=["similarity", "mmr"], label="Search Type", value="similarity"), gr.Slider(1, 10, step=1, value=5, label="Top K") ], outputs=[ gr.Dataframe(label="Results", interactive=False), gr.Dataframe(label="Statistics", interactive=False) ], title="Embedding Comparison Tool", description="Compare different embedding models and retrieval strategies", examples=[ ["example.pdf", "What is machine learning?", ["HuggingFace"], ["e5-base-de"], "recursive", 500, 50, "", "FAISS", "similarity", 5] ], allow_flagging="never" ) tutorial_md = """ # Embedding Comparison Tool Tutorial ... (tutorial content remains the same) ... """ iface = gr.TabbedInterface( [iface, gr.Markdown(tutorial_md)], ["Embedding Comparison", "Tutorial"] ) iface.launch(share=share) if __name__ == "__main__": launch_interface()