File size: 15,914 Bytes
ccb8edf e9d5e9c 6b52825 84cb849 2618588 84cb849 a717449 b35adb8 a717449 b35adb8 a717449 b35adb8 a717449 b35adb8 a717449 b35adb8 a717449 b35adb8 a717449 b35adb8 a717449 b35adb8 a717449 b35adb8 a717449 b35adb8 a717449 b35adb8 3a4f84d b35adb8 3a4f84d b35adb8 3a4f84d b35adb8 3a4f84d 84cb849 a717449 3a4f84d 84cb849 9efbb97 a717449 9efbb97 84cb849 9efbb97 84cb849 a717449 84cb849 a717449 3a4f84d 9efbb97 84cb849 a717449 84cb849 3a4f84d 84cb849 9efbb97 84cb849 9efbb97 84cb849 9efbb97 1754322 9efbb97 fed8ef0 9efbb97 fed8ef0 9efbb97 7fad639 9efbb97 fed8ef0 3a4f84d 7fad639 a717449 7fad639 a717449 7fad639 3a4f84d 7fad639 a717449 7fad639 a717449 7fad639 a717449 7fad639 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
import os
import time
import pdfplumber
import docx
import nltk
import gradio as gr
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.embeddings import (
OpenAIEmbeddings,
CohereEmbeddings,
)
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS, Chroma
from langchain_text_splitters import (
RecursiveCharacterTextSplitter,
TokenTextSplitter,
)
from typing import List, Dict, Any
import pandas as pd
import re
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import SnowballStemmer
import jellyfish # For Kölner Phonetik
from gensim.models import Word2Vec
from gensim.models.fasttext import FastText
from collections import Counter
from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.trainers import BpeTrainer
nltk.download('stopwords', quiet=True)
nltk.download('punkt', quiet=True)
FILES_DIR = './files'
MODELS = {
'HuggingFace': {
'e5-base-de': "danielheinz/e5-base-sts-en-de",
'paraphrase-miniLM': "paraphrase-multilingual-MiniLM-L12-v2",
'paraphrase-mpnet': "paraphrase-multilingual-mpnet-base-v2",
'gte-large': "gte-large",
'gbert-base': "gbert-base"
},
'OpenAI': {
'text-embedding-ada-002': "text-embedding-ada-002"
},
'Cohere': {
'embed-multilingual-v2.0': "embed-multilingual-v2.0"
}
}
def preprocess_text(text, lang='german'):
# Convert to lowercase
text = text.lower()
# Remove special characters and digits
text = re.sub(r'[^a-zA-Z\s]', '', text)
# Tokenize
tokens = word_tokenize(text, language=lang)
# Remove stopwords
stop_words = set(stopwords.words(lang))
tokens = [token for token in tokens if token not in stop_words]
# Stemming
stemmer = SnowballStemmer(lang)
tokens = [stemmer.stem(token) for token in tokens]
return ' '.join(tokens)
def phonetic_match(text, query, method='koelner_phonetik'):
if method == 'koelner_phonetik':
text_phonetic = jellyfish.cologne_phonetic(text)
query_phonetic = jellyfish.cologne_phonetic(query)
return jellyfish.jaro_winkler(text_phonetic, query_phonetic)
# Add other phonetic methods as needed
return 0
class FileHandler:
@staticmethod
def extract_text(file_path):
ext = os.path.splitext(file_path)[-1].lower()
if ext == '.pdf':
return FileHandler._extract_from_pdf(file_path)
elif ext == '.docx':
return FileHandler._extract_from_docx(file_path)
elif ext == '.txt':
return FileHandler._extract_from_txt(file_path)
else:
raise ValueError(f"Unsupported file type: {ext}")
@staticmethod
def _extract_from_pdf(file_path):
with pdfplumber.open(file_path) as pdf:
return ' '.join([page.extract_text() for page in pdf.pages])
@staticmethod
def _extract_from_docx(file_path):
doc = docx.Document(file_path)
return ' '.join([para.text for para in doc.paragraphs])
@staticmethod
def _extract_from_txt(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
return f.read()
def get_embedding_model(model_type, model_name):
if model_type == 'HuggingFace':
return HuggingFaceEmbeddings(model_name=MODELS[model_type][model_name])
elif model_type == 'OpenAI':
return OpenAIEmbeddings(model=MODELS[model_type][model_name])
elif model_type == 'Cohere':
return CohereEmbeddings(model=MODELS[model_type][model_name])
else:
raise ValueError(f"Unsupported model type: {model_type}")
def get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators=None):
if split_strategy == 'token':
return TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap_size)
elif split_strategy == 'recursive':
return RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=overlap_size,
separators=custom_separators or ["\n\n", "\n", " ", ""]
)
else:
raise ValueError(f"Unsupported split strategy: {split_strategy}")
def get_vector_store(vector_store_type, chunks, embedding_model):
if vector_store_type == 'FAISS':
return FAISS.from_texts(chunks, embedding_model)
elif vector_store_type == 'Chroma':
return Chroma.from_texts(chunks, embedding_model)
else:
raise ValueError(f"Unsupported vector store type: {vector_store_type}")
def get_retriever(vector_store, search_type, search_kwargs):
if search_type == 'similarity':
return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs)
elif search_type == 'mmr':
return vector_store.as_retriever(search_type="mmr", search_kwargs=search_kwargs)
elif search_type == 'custom':
# Implement custom retriever logic here
pass
else:
raise ValueError(f"Unsupported search type: {search_type}")
def process_files(file_path, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators, lang='german'):
if file_path:
text = FileHandler.extract_text(file_path)
else:
text = ""
for file in os.listdir(FILES_DIR):
file_path = os.path.join(FILES_DIR, file)
text += FileHandler.extract_text(file_path)
# Preprocess the text
text = preprocess_text(text, lang)
text_splitter = get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators)
chunks = text_splitter.split_text(text)
embedding_model = get_embedding_model(model_type, model_name)
return chunks, embedding_model, len(text.split())
def search_embeddings(chunks, embedding_model, vector_store_type, search_type, query, top_k, lang='german', phonetic_weight=0.3):
# Preprocess the query
preprocessed_query = preprocess_text(query, lang)
vector_store = get_vector_store(vector_store_type, chunks, embedding_model)
retriever = get_retriever(vector_store, search_type, {"k": top_k})
start_time = time.time()
results = retriever.get_relevant_documents(preprocessed_query)
# Apply phonetic matching
results = sorted(results, key=lambda x: (1 - phonetic_weight) * vector_store.similarity_search(x.page_content, k=1)[0][1] +
phonetic_weight * phonetic_match(x.page_content, query),
reverse=True)
end_time = time.time()
return results[:top_k], end_time - start_time, vector_store
def calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model, query, top_k):
stats = {
"num_results": len(results),
"avg_content_length": np.mean([len(doc.page_content) for doc in results]) if results else 0,
"search_time": search_time,
"vector_store_size": vector_store._index.ntotal if hasattr(vector_store, '_index') else "N/A",
"num_documents": len(vector_store.docstore._dict),
"num_tokens": num_tokens,
"embedding_vocab_size": embedding_model.client.get_vocab_size() if hasattr(embedding_model, 'client') and hasattr(embedding_model.client, 'get_vocab_size') else "N/A",
"embedding_dimension": len(embedding_model.embed_query(query)),
"top_k": top_k,
}
# Calculate diversity of results
if len(results) > 1:
embeddings = [embedding_model.embed_query(doc.page_content) for doc in results]
pairwise_similarities = cosine_similarity(embeddings)
stats["result_diversity"] = 1 - np.mean(pairwise_similarities[np.triu_indices(len(embeddings), k=1)])
else:
stats["result_diversity"] = "N/A"
# Calculate rank correlation between embedding similarity and result order
query_embedding = embedding_model.embed_query(query)
result_embeddings = [embedding_model.embed_query(doc.page_content) for doc in results]
similarities = [cosine_similarity([query_embedding], [emb])[0][0] for emb in result_embeddings]
rank_correlation, _ = spearmanr(similarities, range(len(similarities)))
stats["rank_correlation"] = rank_correlation
return stats
def create_custom_embedding(texts, model_type='word2vec', vector_size=100, window=5, min_count=1):
# Tokenize the texts
tokenized_texts = [text.split() for text in texts]
if model_type == 'word2vec':
model = Word2Vec(sentences=tokenized_texts, vector_size=vector_size, window=window, min_count=min_count, workers=4)
elif model_type == 'fasttext':
model = FastText(sentences=tokenized_texts, vector_size=vector_size, window=window, min_count=min_count, workers=4)
else:
raise ValueError("Unsupported model type")
return model
class CustomEmbeddings(HuggingFaceEmbeddings):
def __init__(self, model_path):
self.model = Word2Vec.load(model_path) # or FastText.load() for FastText models
def embed_documents(self, texts):
return [self.model.wv[text.split()] for text in texts]
def embed_query(self, text):
return self.model.wv[text.split()]
def optimize_vocabulary(texts, vocab_size=10000, min_frequency=2):
# Count word frequencies
word_freq = Counter(word for text in texts for word in text.split())
# Remove rare words
optimized_texts = [
' '.join(word for word in text.split() if word_freq[word] >= min_frequency)
for text in texts
]
# Train BPE tokenizer
tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
trainer = BpeTrainer(vocab_size=vocab_size, special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
tokenizer.train_from_iterator(optimized_texts, trainer)
return tokenizer, optimized_texts
def compare_embeddings(file, query, model_types, model_names, split_strategy, chunk_size, overlap_size, custom_separators, vector_store_type, search_type, top_k, lang='german', use_custom_embedding=False, optimize_vocab=False, phonetic_weight=0.3):
all_results = []
all_stats = []
settings = {
"split_strategy": split_strategy,
"chunk_size": chunk_size,
"overlap_size": overlap_size,
"custom_separators": custom_separators,
"vector_store_type": vector_store_type,
"search_type": search_type,
"top_k": top_k,
"lang": lang,
"use_custom_embedding": use_custom_embedding,
"optimize_vocab": optimize_vocab,
"phonetic_weight": phonetic_weight
}
for model_type, model_name in zip(model_types, model_names):
chunks, embedding_model, num_tokens = process_files(
file.name if file else None,
model_type,
model_name,
split_strategy,
chunk_size,
overlap_size,
custom_separators.split(',') if custom_separators else None,
lang
)
if use_custom_embedding:
custom_model = create_custom_embedding(chunks)
embedding_model = CustomEmbeddings(custom_model)
if optimize_vocab:
tokenizer, optimized_chunks = optimize_vocabulary(chunks)
chunks = optimized_chunks
results, search_time, vector_store = search_embeddings(
chunks,
embedding_model,
vector_store_type,
search_type,
query,
top_k,
lang,
phonetic_weight
)
stats = calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model, query, top_k)
stats["model"] = f"{model_type} - {model_name}"
stats.update(settings)
formatted_results = format_results(results, stats)
all_results.extend(formatted_results)
all_stats.append(stats)
results_df = pd.DataFrame(all_results)
stats_df = pd.DataFrame(all_stats)
return results_df, stats_df
def format_results(results, stats):
formatted_results = []
for doc in results:
result = {
"Model": stats["model"],
"Content": doc.page_content,
**doc.metadata,
**{k: v for k, v in stats.items() if k not in ["model"]}
}
formatted_results.append(result)
return formatted_results
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.manifold import TSNE
def visualize_results(results_df, stats_df):
# Create a figure with subplots
fig, axs = plt.subplots(2, 2, figsize=(20, 20))
# 1. Bar plot of search times
sns.barplot(x='model', y='search_time', data=stats_df, ax=axs[0, 0])
axs[0, 0].set_title('Search Time by Model')
axs[0, 0].set_xticklabels(axs[0, 0].get_xticklabels(), rotation=45, ha='right')
# 2. Scatter plot of result diversity vs. rank correlation
sns.scatterplot(x='result_diversity', y='rank_correlation', hue='model', data=stats_df, ax=axs[0, 1])
axs[0, 1].set_title('Result Diversity vs. Rank Correlation')
# 3. Box plot of content lengths
sns.boxplot(x='model', y='content_length', data=results_df, ax=axs[1, 0])
axs[1, 0].set_title('Distribution of Result Content Lengths')
axs[1, 0].set_xticklabels(axs[1, 0].get_xticklabels(), rotation=45, ha='right')
# 4. t-SNE visualization of embeddings
embeddings = np.array(results_df['embedding'].tolist())
tsne = TSNE(n_components=2, random_state=42)
embeddings_2d = tsne.fit_transform(embeddings)
sns.scatterplot(x=embeddings_2d[:, 0], y=embeddings_2d[:, 1], hue=results_df['model'], ax=axs[1, 1])
axs[1, 1].set_title('t-SNE Visualization of Result Embeddings')
plt.tight_layout()
return fig
def launch_interface(share=True):
iface = gr.Interface(
fn=compare_embeddings,
inputs=[
gr.File(label="Upload File (Optional)"),
gr.Textbox(label="Search Query"),
gr.CheckboxGroup(choices=list(MODELS.keys()) + ["Custom"], label="Embedding Model Types"),
gr.CheckboxGroup(choices=[model for models in MODELS.values() for model in models] + ["custom_model"], label="Embedding Models"),
gr.Radio(choices=["token", "recursive"], label="Split Strategy", value="recursive"),
gr.Slider(100, 1000, step=100, value=500, label="Chunk Size"),
gr.Slider(0, 100, step=10, value=50, label="Overlap Size"),
gr.Textbox(label="Custom Split Separators (comma-separated, optional)"),
gr.Radio(choices=["FAISS", "Chroma"], label="Vector Store Type", value="FAISS"),
gr.Radio(choices=["similarity", "mmr", "custom"], label="Search Type", value="similarity"),
gr.Slider(1, 10, step=1, value=5, label="Top K"),
gr.Dropdown(choices=["german", "english", "french"], label="Language", value="german"),
gr.Checkbox(label="Use Custom Embedding", value=False),
gr.Checkbox(label="Optimize Vocabulary", value=False),
gr.Slider(0, 1, step=0.1, value=0.3, label="Phonetic Matching Weight")
],
outputs=[
gr.Dataframe(label="Results", interactive=False),
gr.Dataframe(label="Statistics", interactive=False),
gr.Plot(label="Visualizations")
],
title="Advanced Embedding Comparison Tool",
description="Compare different embedding models and retrieval strategies with advanced preprocessing and phonetic matching"
)
tutorial_md = """
# Advanced Embedding Comparison Tool Tutorial
... (update the tutorial to include information about the new features) ...
"""
iface = gr.TabbedInterface(
[iface, gr.Markdown(tutorial_md)],
["Embedding Comparison", "Tutorial"]
)
iface.launch(share=share)
if __name__ == "__main__":
launch_interface() |