File size: 15,914 Bytes
ccb8edf
 
 
 
 
 
e9d5e9c
6b52825
84cb849
 
 
2618588
 
 
84cb849
 
 
 
 
a717449
 
 
 
 
 
 
 
 
 
 
 
 
b35adb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a717449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b35adb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a717449
 
 
 
 
b35adb8
a717449
b35adb8
a717449
b35adb8
 
 
 
a717449
 
 
b35adb8
 
 
a717449
b35adb8
 
 
 
 
 
 
a717449
 
 
b35adb8
 
 
 
 
 
 
 
a717449
 
 
 
b35adb8
 
 
 
a717449
 
 
 
 
 
 
b35adb8
 
a717449
b35adb8
3a4f84d
 
b35adb8
3a4f84d
b35adb8
 
 
 
3a4f84d
 
 
b35adb8
3a4f84d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84cb849
a717449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a4f84d
84cb849
 
9efbb97
 
 
 
 
 
 
a717449
 
 
 
 
9efbb97
84cb849
 
9efbb97
84cb849
 
 
 
 
 
a717449
 
84cb849
 
a717449
 
 
 
 
 
 
 
3a4f84d
9efbb97
84cb849
 
 
 
 
a717449
 
 
84cb849
 
3a4f84d
84cb849
9efbb97
84cb849
9efbb97
 
 
84cb849
9efbb97
 
1754322
9efbb97
fed8ef0
9efbb97
 
fed8ef0
9efbb97
 
7fad639
9efbb97
 
 
 
 
fed8ef0
3a4f84d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fad639
 
 
 
 
 
a717449
 
7fad639
 
 
 
 
a717449
 
 
 
 
 
7fad639
 
 
3a4f84d
 
7fad639
a717449
 
7fad639
 
 
a717449
7fad639
a717449
7fad639
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import os
import time
import pdfplumber
import docx
import nltk
import gradio as gr
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.embeddings import (
    OpenAIEmbeddings,
    CohereEmbeddings,
)
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS, Chroma
from langchain_text_splitters import (
    RecursiveCharacterTextSplitter,
    TokenTextSplitter,
)
from typing import List, Dict, Any
import pandas as pd
import re
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import SnowballStemmer
import jellyfish  # For Kölner Phonetik
from gensim.models import Word2Vec
from gensim.models.fasttext import FastText
from collections import Counter
from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.trainers import BpeTrainer

nltk.download('stopwords', quiet=True)
nltk.download('punkt', quiet=True)

FILES_DIR = './files'

MODELS = {
    'HuggingFace': {
        'e5-base-de': "danielheinz/e5-base-sts-en-de",
        'paraphrase-miniLM': "paraphrase-multilingual-MiniLM-L12-v2",
        'paraphrase-mpnet': "paraphrase-multilingual-mpnet-base-v2",
        'gte-large': "gte-large",
        'gbert-base': "gbert-base"
    },
    'OpenAI': {
        'text-embedding-ada-002': "text-embedding-ada-002"
    },
    'Cohere': {
        'embed-multilingual-v2.0': "embed-multilingual-v2.0"
    }
}

def preprocess_text(text, lang='german'):
    # Convert to lowercase
    text = text.lower()
    
    # Remove special characters and digits
    text = re.sub(r'[^a-zA-Z\s]', '', text)
    
    # Tokenize
    tokens = word_tokenize(text, language=lang)
    
    # Remove stopwords
    stop_words = set(stopwords.words(lang))
    tokens = [token for token in tokens if token not in stop_words]
    
    # Stemming
    stemmer = SnowballStemmer(lang)
    tokens = [stemmer.stem(token) for token in tokens]
    
    return ' '.join(tokens)

def phonetic_match(text, query, method='koelner_phonetik'):
    if method == 'koelner_phonetik':
        text_phonetic = jellyfish.cologne_phonetic(text)
        query_phonetic = jellyfish.cologne_phonetic(query)
        return jellyfish.jaro_winkler(text_phonetic, query_phonetic)
    # Add other phonetic methods as needed
    return 0

class FileHandler:
    @staticmethod
    def extract_text(file_path):
        ext = os.path.splitext(file_path)[-1].lower()
        if ext == '.pdf':
            return FileHandler._extract_from_pdf(file_path)
        elif ext == '.docx':
            return FileHandler._extract_from_docx(file_path)
        elif ext == '.txt':
            return FileHandler._extract_from_txt(file_path)
        else:
            raise ValueError(f"Unsupported file type: {ext}")

    @staticmethod
    def _extract_from_pdf(file_path):
        with pdfplumber.open(file_path) as pdf:
            return ' '.join([page.extract_text() for page in pdf.pages])

    @staticmethod
    def _extract_from_docx(file_path):
        doc = docx.Document(file_path)
        return ' '.join([para.text for para in doc.paragraphs])

    @staticmethod
    def _extract_from_txt(file_path):
        with open(file_path, 'r', encoding='utf-8') as f:
            return f.read()

def get_embedding_model(model_type, model_name):
    if model_type == 'HuggingFace':
        return HuggingFaceEmbeddings(model_name=MODELS[model_type][model_name])
    elif model_type == 'OpenAI':
        return OpenAIEmbeddings(model=MODELS[model_type][model_name])
    elif model_type == 'Cohere':
        return CohereEmbeddings(model=MODELS[model_type][model_name])
    else:
        raise ValueError(f"Unsupported model type: {model_type}")

def get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators=None):
    if split_strategy == 'token':
        return TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap_size)
    elif split_strategy == 'recursive':
        return RecursiveCharacterTextSplitter(
            chunk_size=chunk_size,
            chunk_overlap=overlap_size,
            separators=custom_separators or ["\n\n", "\n", " ", ""]
        )
    else:
        raise ValueError(f"Unsupported split strategy: {split_strategy}")

def get_vector_store(vector_store_type, chunks, embedding_model):
    if vector_store_type == 'FAISS':
        return FAISS.from_texts(chunks, embedding_model)
    elif vector_store_type == 'Chroma':
        return Chroma.from_texts(chunks, embedding_model)
    else:
        raise ValueError(f"Unsupported vector store type: {vector_store_type}")

def get_retriever(vector_store, search_type, search_kwargs):
    if search_type == 'similarity':
        return vector_store.as_retriever(search_type="similarity", search_kwargs=search_kwargs)
    elif search_type == 'mmr':
        return vector_store.as_retriever(search_type="mmr", search_kwargs=search_kwargs)
    elif search_type == 'custom':
        # Implement custom retriever logic here
        pass
    else:
        raise ValueError(f"Unsupported search type: {search_type}")

def process_files(file_path, model_type, model_name, split_strategy, chunk_size, overlap_size, custom_separators, lang='german'):
    if file_path:
        text = FileHandler.extract_text(file_path)
    else:
        text = ""
        for file in os.listdir(FILES_DIR):
            file_path = os.path.join(FILES_DIR, file)
            text += FileHandler.extract_text(file_path)
    
    # Preprocess the text
    text = preprocess_text(text, lang)

    text_splitter = get_text_splitter(split_strategy, chunk_size, overlap_size, custom_separators)
    chunks = text_splitter.split_text(text)

    embedding_model = get_embedding_model(model_type, model_name)

    return chunks, embedding_model, len(text.split())

def search_embeddings(chunks, embedding_model, vector_store_type, search_type, query, top_k, lang='german', phonetic_weight=0.3):
    # Preprocess the query
    preprocessed_query = preprocess_text(query, lang)
    
    vector_store = get_vector_store(vector_store_type, chunks, embedding_model)
    retriever = get_retriever(vector_store, search_type, {"k": top_k})

    start_time = time.time()
    results = retriever.get_relevant_documents(preprocessed_query)
    
    # Apply phonetic matching
    results = sorted(results, key=lambda x: (1 - phonetic_weight) * vector_store.similarity_search(x.page_content, k=1)[0][1] + 
                                            phonetic_weight * phonetic_match(x.page_content, query),
                     reverse=True)
    
    end_time = time.time()

    return results[:top_k], end_time - start_time, vector_store

def calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model, query, top_k):
    stats = {
        "num_results": len(results),
        "avg_content_length": np.mean([len(doc.page_content) for doc in results]) if results else 0,
        "search_time": search_time,
        "vector_store_size": vector_store._index.ntotal if hasattr(vector_store, '_index') else "N/A",
        "num_documents": len(vector_store.docstore._dict),
        "num_tokens": num_tokens,
        "embedding_vocab_size": embedding_model.client.get_vocab_size() if hasattr(embedding_model, 'client') and hasattr(embedding_model.client, 'get_vocab_size') else "N/A",
        "embedding_dimension": len(embedding_model.embed_query(query)),
        "top_k": top_k,
    }
    
    # Calculate diversity of results
    if len(results) > 1:
        embeddings = [embedding_model.embed_query(doc.page_content) for doc in results]
        pairwise_similarities = cosine_similarity(embeddings)
        stats["result_diversity"] = 1 - np.mean(pairwise_similarities[np.triu_indices(len(embeddings), k=1)])
    else:
        stats["result_diversity"] = "N/A"
    
    # Calculate rank correlation between embedding similarity and result order
    query_embedding = embedding_model.embed_query(query)
    result_embeddings = [embedding_model.embed_query(doc.page_content) for doc in results]
    similarities = [cosine_similarity([query_embedding], [emb])[0][0] for emb in result_embeddings]
    rank_correlation, _ = spearmanr(similarities, range(len(similarities)))
    stats["rank_correlation"] = rank_correlation
    
    return stats

def create_custom_embedding(texts, model_type='word2vec', vector_size=100, window=5, min_count=1):
    # Tokenize the texts
    tokenized_texts = [text.split() for text in texts]
    
    if model_type == 'word2vec':
        model = Word2Vec(sentences=tokenized_texts, vector_size=vector_size, window=window, min_count=min_count, workers=4)
    elif model_type == 'fasttext':
        model = FastText(sentences=tokenized_texts, vector_size=vector_size, window=window, min_count=min_count, workers=4)
    else:
        raise ValueError("Unsupported model type")
    
    return model

class CustomEmbeddings(HuggingFaceEmbeddings):
    def __init__(self, model_path):
        self.model = Word2Vec.load(model_path)  # or FastText.load() for FastText models
    
    def embed_documents(self, texts):
        return [self.model.wv[text.split()] for text in texts]
    
    def embed_query(self, text):
        return self.model.wv[text.split()]

def optimize_vocabulary(texts, vocab_size=10000, min_frequency=2):
    # Count word frequencies
    word_freq = Counter(word for text in texts for word in text.split())
    
    # Remove rare words
    optimized_texts = [
        ' '.join(word for word in text.split() if word_freq[word] >= min_frequency)
        for text in texts
    ]
    
    # Train BPE tokenizer
    tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
    trainer = BpeTrainer(vocab_size=vocab_size, special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
    tokenizer.train_from_iterator(optimized_texts, trainer)
    
    return tokenizer, optimized_texts

def compare_embeddings(file, query, model_types, model_names, split_strategy, chunk_size, overlap_size, custom_separators, vector_store_type, search_type, top_k, lang='german', use_custom_embedding=False, optimize_vocab=False, phonetic_weight=0.3):
    all_results = []
    all_stats = []
    settings = {
        "split_strategy": split_strategy,
        "chunk_size": chunk_size,
        "overlap_size": overlap_size,
        "custom_separators": custom_separators,
        "vector_store_type": vector_store_type,
        "search_type": search_type,
        "top_k": top_k,
        "lang": lang,
        "use_custom_embedding": use_custom_embedding,
        "optimize_vocab": optimize_vocab,
        "phonetic_weight": phonetic_weight
    }

    for model_type, model_name in zip(model_types, model_names):
        chunks, embedding_model, num_tokens = process_files(
            file.name if file else None,
            model_type,
            model_name,
            split_strategy,
            chunk_size,
            overlap_size,
            custom_separators.split(',') if custom_separators else None,
            lang
        )

        if use_custom_embedding:
            custom_model = create_custom_embedding(chunks)
            embedding_model = CustomEmbeddings(custom_model)

        if optimize_vocab:
            tokenizer, optimized_chunks = optimize_vocabulary(chunks)
            chunks = optimized_chunks


        results, search_time, vector_store = search_embeddings(
            chunks,
            embedding_model,
            vector_store_type,
            search_type,
            query,
            top_k,
            lang,
            phonetic_weight
        )

        stats = calculate_statistics(results, search_time, vector_store, num_tokens, embedding_model, query, top_k)
        stats["model"] = f"{model_type} - {model_name}"
        stats.update(settings)

        formatted_results = format_results(results, stats)
        all_results.extend(formatted_results)
        all_stats.append(stats)

    results_df = pd.DataFrame(all_results)
    stats_df = pd.DataFrame(all_stats)

    return results_df, stats_df

def format_results(results, stats):
    formatted_results = []
    for doc in results:
        result = {
            "Model": stats["model"],
            "Content": doc.page_content,
            **doc.metadata,
            **{k: v for k, v in stats.items() if k not in ["model"]}
        }
        formatted_results.append(result)
    return formatted_results

import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.manifold import TSNE

def visualize_results(results_df, stats_df):
    # Create a figure with subplots
    fig, axs = plt.subplots(2, 2, figsize=(20, 20))
    
    # 1. Bar plot of search times
    sns.barplot(x='model', y='search_time', data=stats_df, ax=axs[0, 0])
    axs[0, 0].set_title('Search Time by Model')
    axs[0, 0].set_xticklabels(axs[0, 0].get_xticklabels(), rotation=45, ha='right')
    
    # 2. Scatter plot of result diversity vs. rank correlation
    sns.scatterplot(x='result_diversity', y='rank_correlation', hue='model', data=stats_df, ax=axs[0, 1])
    axs[0, 1].set_title('Result Diversity vs. Rank Correlation')
    
    # 3. Box plot of content lengths
    sns.boxplot(x='model', y='content_length', data=results_df, ax=axs[1, 0])
    axs[1, 0].set_title('Distribution of Result Content Lengths')
    axs[1, 0].set_xticklabels(axs[1, 0].get_xticklabels(), rotation=45, ha='right')
    
    # 4. t-SNE visualization of embeddings
    embeddings = np.array(results_df['embedding'].tolist())
    tsne = TSNE(n_components=2, random_state=42)
    embeddings_2d = tsne.fit_transform(embeddings)
    
    sns.scatterplot(x=embeddings_2d[:, 0], y=embeddings_2d[:, 1], hue=results_df['model'], ax=axs[1, 1])
    axs[1, 1].set_title('t-SNE Visualization of Result Embeddings')
    
    plt.tight_layout()
    return fig

def launch_interface(share=True):
    iface = gr.Interface(
        fn=compare_embeddings,
        inputs=[
            gr.File(label="Upload File (Optional)"),
            gr.Textbox(label="Search Query"),
            gr.CheckboxGroup(choices=list(MODELS.keys()) + ["Custom"], label="Embedding Model Types"),
            gr.CheckboxGroup(choices=[model for models in MODELS.values() for model in models] + ["custom_model"], label="Embedding Models"),
            gr.Radio(choices=["token", "recursive"], label="Split Strategy", value="recursive"),
            gr.Slider(100, 1000, step=100, value=500, label="Chunk Size"),
            gr.Slider(0, 100, step=10, value=50, label="Overlap Size"),
            gr.Textbox(label="Custom Split Separators (comma-separated, optional)"),
            gr.Radio(choices=["FAISS", "Chroma"], label="Vector Store Type", value="FAISS"),
            gr.Radio(choices=["similarity", "mmr", "custom"], label="Search Type", value="similarity"),
            gr.Slider(1, 10, step=1, value=5, label="Top K"),
            gr.Dropdown(choices=["german", "english", "french"], label="Language", value="german"),
            gr.Checkbox(label="Use Custom Embedding", value=False),
            gr.Checkbox(label="Optimize Vocabulary", value=False),
            gr.Slider(0, 1, step=0.1, value=0.3, label="Phonetic Matching Weight")
        ],
        outputs=[
            gr.Dataframe(label="Results", interactive=False),
            gr.Dataframe(label="Statistics", interactive=False),
            gr.Plot(label="Visualizations")
        ],
        title="Advanced Embedding Comparison Tool",
        description="Compare different embedding models and retrieval strategies with advanced preprocessing and phonetic matching"
    )

    tutorial_md = """
    # Advanced Embedding Comparison Tool Tutorial

    ... (update the tutorial to include information about the new features) ...
    """

    iface = gr.TabbedInterface(
        [iface, gr.Markdown(tutorial_md)],
        ["Embedding Comparison", "Tutorial"]
    )

    iface.launch(share=share)

if __name__ == "__main__":
    launch_interface()