""" Vision Transformer (ViT) in PyTorch """ import torch import torch.nn as nn from einops import rearrange from .layers import * import math def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs } default_cfgs = { # patch models 'vit_small_patch16_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth', ), 'vit_base_patch16_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), ), 'vit_large_patch16_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), } def compute_rollout_attention(all_layer_matrices, start_layer=0): # adding residual consideration num_tokens = all_layer_matrices[0].shape[1] batch_size = all_layer_matrices[0].shape[0] eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device) all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))] # all_layer_matrices = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True) # for i in range(len(all_layer_matrices))] joint_attention = all_layer_matrices[start_layer] for i in range(start_layer+1, len(all_layer_matrices)): joint_attention = all_layer_matrices[i].bmm(joint_attention) return joint_attention class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = Linear(in_features, hidden_features) self.act = GELU() self.fc2 = Linear(hidden_features, out_features) self.drop = Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def relprop(self, cam, **kwargs): cam = self.drop.relprop(cam, **kwargs) cam = self.fc2.relprop(cam, **kwargs) cam = self.act.relprop(cam, **kwargs) cam = self.fc1.relprop(cam, **kwargs) return cam class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False,attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = head_dim ** -0.5 # A = Q*K^T self.matmul1 = einsum('bhid,bhjd->bhij') # attn = A*V self.matmul2 = einsum('bhij,bhjd->bhid') self.qkv = Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = Dropout(attn_drop) self.proj = Linear(dim, dim) self.proj_drop = Dropout(proj_drop) self.softmax = Softmax(dim=-1) self.attn_cam = None self.attn = None self.v = None self.v_cam = None self.attn_gradients = None def get_attn(self): return self.attn def save_attn(self, attn): self.attn = attn def save_attn_cam(self, cam): self.attn_cam = cam def get_attn_cam(self): return self.attn_cam def get_v(self): return self.v def save_v(self, v): self.v = v def save_v_cam(self, cam): self.v_cam = cam def get_v_cam(self): return self.v_cam def save_attn_gradients(self, attn_gradients): self.attn_gradients = attn_gradients def get_attn_gradients(self): return self.attn_gradients def forward(self, x): b, n, _, h = *x.shape, self.num_heads qkv = self.qkv(x) q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv=3, h=h) self.save_v(v) dots = self.matmul1([q, k]) * self.scale attn = self.softmax(dots) attn = self.attn_drop(attn) # Get attention if False: from os import path if not path.exists('att_1.pt'): torch.save(attn, 'att_1.pt') elif not path.exists('att_2.pt'): torch.save(attn, 'att_2.pt') else: torch.save(attn, 'att_3.pt') #comment in training if x.requires_grad: self.save_attn(attn) attn.register_hook(self.save_attn_gradients) out = self.matmul2([attn, v]) out = rearrange(out, 'b h n d -> b n (h d)') out = self.proj(out) out = self.proj_drop(out) return out def relprop(self, cam, **kwargs): cam = self.proj_drop.relprop(cam, **kwargs) cam = self.proj.relprop(cam, **kwargs) cam = rearrange(cam, 'b n (h d) -> b h n d', h=self.num_heads) # attn = A*V (cam1, cam_v)= self.matmul2.relprop(cam, **kwargs) cam1 /= 2 cam_v /= 2 self.save_v_cam(cam_v) self.save_attn_cam(cam1) cam1 = self.attn_drop.relprop(cam1, **kwargs) cam1 = self.softmax.relprop(cam1, **kwargs) # A = Q*K^T (cam_q, cam_k) = self.matmul1.relprop(cam1, **kwargs) cam_q /= 2 cam_k /= 2 cam_qkv = rearrange([cam_q, cam_k, cam_v], 'qkv b h n d -> b n (qkv h d)', qkv=3, h=self.num_heads) return self.qkv.relprop(cam_qkv, **kwargs) class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.): super().__init__() self.norm1 = LayerNorm(dim, eps=1e-6) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.norm2 = LayerNorm(dim, eps=1e-6) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, drop=drop) self.add1 = Add() self.add2 = Add() self.clone1 = Clone() self.clone2 = Clone() def forward(self, x): x1, x2 = self.clone1(x, 2) x = self.add1([x1, self.attn(self.norm1(x2))]) x1, x2 = self.clone2(x, 2) x = self.add2([x1, self.mlp(self.norm2(x2))]) return x def relprop(self, cam, **kwargs): (cam1, cam2) = self.add2.relprop(cam, **kwargs) cam2 = self.mlp.relprop(cam2, **kwargs) cam2 = self.norm2.relprop(cam2, **kwargs) cam = self.clone2.relprop((cam1, cam2), **kwargs) (cam1, cam2) = self.add1.relprop(cam, **kwargs) cam2 = self.attn.relprop(cam2, **kwargs) cam2 = self.norm1.relprop(cam2, **kwargs) cam = self.clone1.relprop((cam1, cam2), **kwargs) return cam class VisionTransformer(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, num_classes=2, embed_dim=64, depth=3, num_heads=8, mlp_ratio=2., qkv_bias=False, mlp_head=False, drop_rate=0., attn_drop_rate=0.): super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate) for i in range(depth)]) self.norm = LayerNorm(embed_dim) if mlp_head: # paper diagram suggests 'MLP head', but results in 4M extra parameters vs paper self.head = Mlp(embed_dim, int(embed_dim * mlp_ratio), num_classes) else: # with a single Linear layer as head, the param count within rounding of paper self.head = Linear(embed_dim, num_classes) #self.apply(self._init_weights) self.pool = IndexSelect() self.add = Add() self.inp_grad = None def save_inp_grad(self,grad): self.inp_grad = grad def get_inp_grad(self): return self.inp_grad def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @property def no_weight_decay(self): return {'pos_embed', 'cls_token'} def forward(self, x): if x.requires_grad: x.register_hook(self.save_inp_grad) #comment it in train for blk in self.blocks: x = blk(x) x = self.norm(x) x = self.pool(x, dim=1, indices=torch.tensor(0, device=x.device)) x = x.squeeze(1) x = self.head(x) return x def relprop(self, cam=None,method="transformer_attribution", is_ablation=False, start_layer=0, **kwargs): # print(kwargs) # print("conservation 1", cam.sum()) cam = self.head.relprop(cam, **kwargs) cam = cam.unsqueeze(1) cam = self.pool.relprop(cam, **kwargs) cam = self.norm.relprop(cam, **kwargs) for blk in reversed(self.blocks): cam = blk.relprop(cam, **kwargs) # print("conservation 2", cam.sum()) # print("min", cam.min()) if method == "full": (cam, _) = self.add.relprop(cam, **kwargs) cam = cam[:, 1:] cam = self.patch_embed.relprop(cam, **kwargs) # sum on channels cam = cam.sum(dim=1) return cam elif method == "rollout": # cam rollout attn_cams = [] for blk in self.blocks: attn_heads = blk.attn.get_attn_cam().clamp(min=0) avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach() attn_cams.append(avg_heads) cam = compute_rollout_attention(attn_cams, start_layer=start_layer) cam = cam[:, 0, 1:] return cam # our method, method name grad is legacy elif method == "transformer_attribution" or method == "grad": cams = [] for blk in self.blocks: grad = blk.attn.get_attn_gradients() cam = blk.attn.get_attn_cam() cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) cam = grad * cam cam = cam.clamp(min=0).mean(dim=0) cams.append(cam.unsqueeze(0)) rollout = compute_rollout_attention(cams, start_layer=start_layer) cam = rollout[:, 0, 1:] return cam elif method == "last_layer": cam = self.blocks[-1].attn.get_attn_cam() cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) if is_ablation: grad = self.blocks[-1].attn.get_attn_gradients() grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) cam = grad * cam cam = cam.clamp(min=0).mean(dim=0) cam = cam[0, 1:] return cam elif method == "last_layer_attn": cam = self.blocks[-1].attn.get_attn() cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) cam = cam.clamp(min=0).mean(dim=0) cam = cam[0, 1:] return cam elif method == "second_layer": cam = self.blocks[1].attn.get_attn_cam() cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) if is_ablation: grad = self.blocks[1].attn.get_attn_gradients() grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) cam = grad * cam cam = cam.clamp(min=0).mean(dim=0) cam = cam[0, 1:] return cam