from sentence_transformers import SentenceTransformer from PIL import Image from fastapi import UploadFile from typing import List, Optional import torch import os # Load model model = SentenceTransformer("clip-ViT-B-32") # Load model with custom cache directory # model = SentenceTransformer("clip-ViT-B-32") def get_text_embedding(text: str) -> Optional[List[float]]: try: embedding = model.encode(text, convert_to_tensor=True).cpu().numpy().tolist() return embedding except Exception as e: print(f"Error generating text embedding: {e}") return None def get_image_embedding(image_file: UploadFile) -> Optional[List[float]]: try: image = Image.open(image_file.file).convert("RGB").resize((224, 224)) embedding = model.encode(image, convert_to_tensor=True).cpu().numpy().tolist() return embedding except Exception as e: print(f"Error generating image embedding: {e}") return None