import streamlit as st import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier def train_iris_model(): df = pd.read_csv("Iris.csv") df['Species'] = df['Species'].map({'Iris-setosa': 0, 'Iris-virginica': 1, 'Iris-versicolor': 2}) del df["Id"] X = df.loc[:, df.columns != 'Species'] y = df['Species'] X_train, _, y_train, _ = train_test_split(X, y, test_size=0.3, random_state=42) model = KNeighborsClassifier() model.fit(X_train, y_train) return model def predict_iris_species(model, input_data): # Reshape the input data to (1, -1) to make it compatible with model.predict input_data = np.array(input_data).reshape(1, -1) # Make predictions using the trained model prediction = model.predict(input_data) return prediction def main(): st.title("Iris Species Prediction App") sepal_length = st.slider("Sepal Length", 0.0, 10.0, 5.0) sepal_width = st.slider("Sepal Width", 0.0, 10.0, 5.0) petal_length = st.slider("Petal Length", 0.0, 10.0, 5.0) petal_width = st.slider("Petal Width", 0.0, 10.0, 5.0) trained_model = train_iris_model() input_values = [sepal_length, sepal_width, petal_length, petal_width] prediction_result = predict_iris_species(trained_model, input_values) st.write(f"Predicted Species: {prediction_result[0]}") if __name__ == "__main__": main()