from diffusers import CycleDiffusionPipeline, DDIMScheduler
import gradio as gr
import torch
from PIL import Image
import utils
import streamlit as st
is_colab = utils.is_google_colab()
if False:
model_id_or_path = "CompVis/stable-diffusion-v1-4"
scheduler = DDIMScheduler.from_config(model_id_or_path,
use_auth_token=st.secrets["USER_TOKEN"],
subfolder="scheduler")
pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path,
use_auth_token=st.secrets["USER_TOKEN"],
scheduler=scheduler)
if torch.cuda.is_available():
pipe = pipe.to("cuda")
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
def inference(source_prompt, target_prompt, source_guidance_scale=1, guidance_scale=5, num_inference_steps=100,
width=512, height=512, seed=0, img=None, strength=0.7):
torch.manual_seed(seed)
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)))
results = pipe(prompt=target_prompt,
source_prompt=source_prompt,
init_image=img,
num_inference_steps=num_inference_steps,
eta=0.1,
strength=strength,
guidance_scale=guidance_scale,
source_guidance_scale=source_guidance_scale,
)
return replace_nsfw_images(results)
def replace_nsfw_images(results):
for i in range(len(results.images)):
if results.nsfw_content_detected[i]:
results.images[i] = Image.open("nsfw.png")
return results.images[0]
css = """.cycle-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.cycle-diffusion-div div h1{font-weight:900;margin-bottom:7px}.cycle-diffusion-div p{margin-bottom:10px;font-size:94%}.cycle-diffusion-div p a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
CycleDiffusion with Stable Diffusion
Demo for CycleDiffusion with Stable Diffusion.
Pipeline doc | Paper
You can skip the queue in the colab:
Running on
{device}{(" in a
Google Colab." if is_colab else "")}
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
img = gr.Image(label="Input image", height=512, tool="editor", type="pil")
image_out = gr.Image(label="Output image", height=512)
# gallery = gr.Gallery(
# label="Generated images", show_label=False, elem_id="gallery"
# ).style(grid=[1], height="auto")
with gr.Column(scale=45):
with gr.Tab("Options"):
with gr.Group():
with gr.Row():
source_prompt = gr.Textbox(label="Source prompt", placeholder="Source prompt describes the input image")
with gr.Row():
target_prompt = gr.Textbox(label="Target prompt", placeholder="Target prompt describes the output image")
with gr.Row():
source_guidance_scale = gr.Slider(label="Source guidance scale", value=1, minimum=1, maximum=10)
guidance_scale = gr.Slider(label="Target guidance scale", value=5, minimum=1, maximum=10)
with gr.Row():
num_inference_steps = gr.Slider(label="Number of inference steps", value=100, minimum=25, maximum=500, step=1)
strength = gr.Slider(label="Strength", value=0.7, minimum=0.5, maximum=1, step=0.01)
with gr.Row():
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
with gr.Row():
seed = gr.Slider(0, 2147483647, label='Seed', value=0, step=1)
with gr.Row():
generate = gr.Button(value="Edit")
inputs = [source_prompt, target_prompt, source_guidance_scale, guidance_scale, num_inference_steps,
width, height, seed, img, strength]
generate.click(inference, inputs=inputs, outputs=image_out)
ex = gr.Examples(
[
["An astronaut riding a horse", "An astronaut riding an elephant", 1, 2, 100, 512, 512, 0, "images/astronaut_horse.png", 0.8],
["A black colored car.", "A blue colored car.", 1, 2, 100, 512, 512, 0, "images/black_car.png", 0.85],
],
[source_prompt, target_prompt, source_guidance_scale, guidance_scale, num_inference_steps,
width, height, seed, img, strength],
image_out, inference, cache_examples=False)
gr.Markdown('''
Space built with Diffusers 🧨 by HuggingFace 🤗.
[![Twitter Follow](https://img.shields.io/twitter/follow/ChenHenryWu?style=social)](https://twitter.com/ChenHenryWu)
![visitors](https://visitor-badge.glitch.me/badge?page_id=ChenWu98.CycleDiffusion)
''')
if not is_colab:
demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab)