import gradio as gr from transformers import pipeline # Load a pre-trained sentiment-analysis model classifier = pipeline("sentiment-analysis", model="ChavinloSocialRise/bot_rejection_model") # Define a function to classify the input text def classify_text(text): result = classifier(text)[0] # Get the first result label = result['label'] # The label (e.g., POSITIVE, NEGATIVE) score = result['score'] # The confidence score return f"Label: {label}, Confidence: {score:.4f}" # Create a Gradio interface iface = gr.Interface( fn=classify_text, # Function to call inputs="text", # Input: a text box outputs="text", # Output: text title="Text Classifier", description="Enter some text and see the classification result." ) # Launch the app if __name__ == "__main__": iface.launch()