SMILES2PEPTIDE / app.py
yinuozhang's picture
add more functions
a21a9e8
raw
history blame
23 kB
import gradio as gr
import re
import pandas as pd
from io import StringIO
import rdkit
from rdkit import Chem
from rdkit.Chem import AllChem, Draw
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from io import BytesIO
def is_peptide(smiles):
"""Check if the SMILES represents a peptide by looking for peptide bonds"""
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return False
# Look for peptide bonds: NC(=O) pattern
peptide_bond_pattern = Chem.MolFromSmarts('[NH][C](=O)')
if mol.HasSubstructMatch(peptide_bond_pattern):
return True
# Look for N-methylated peptide bonds: N(C)C(=O) pattern
n_methyl_pattern = Chem.MolFromSmarts('[N;H0;$(NC)](C)[C](=O)')
if mol.HasSubstructMatch(n_methyl_pattern):
return True
# Look for ester bonds in cyclic depsipeptides: OC(=O) pattern
ester_bond_pattern = Chem.MolFromSmarts('O[C](=O)')
if mol.HasSubstructMatch(ester_bond_pattern):
return True
return False
def remove_nested_branches(smiles):
"""Remove nested branches from SMILES string"""
result = ''
depth = 0
for char in smiles:
if char == '(':
depth += 1
elif char == ')':
depth -= 1
elif depth == 0:
result += char
return result
def identify_linkage_type(segment):
"""
Identify the type of linkage between residues
Returns: tuple (type, is_n_methylated)
"""
if 'OC(=O)' in segment:
return ('ester', False)
elif 'N(C)C(=O)' in segment:
return ('peptide', True) # N-methylated peptide bond
elif 'NC(=O)' in segment:
return ('peptide', False) # Regular peptide bond
return (None, False)
def identify_residue(segment, next_segment=None, prev_segment=None):
"""
Identify amino acid residues with modifications and special handling for Proline
Returns: tuple (residue, modifications)
"""
modifications = []
# Check for modifications in the next segment
if next_segment:
if 'N(C)C(=O)' in next_segment:
modifications.append('N-Me')
if 'OC(=O)' in next_segment:
modifications.append('O-linked')
# Special case for Proline - check for CCCN pattern and its cyclization
# Proline can appear in several patterns due to its cyclic nature
if any(pattern in segment for pattern in ['CCCN2', 'N2CCC', '[C@@H]2CCCN2', 'CCCN1', 'N1CCC']):
return ('Pro', modifications)
# Check if this segment is part of a Proline ring by looking at context
if prev_segment and next_segment:
if ('CCC' in segment and 'N' in next_segment) or ('N' in segment and 'CCC' in prev_segment):
combined = prev_segment + segment + next_segment
if re.search(r'CCCN.*C\(=O\)', combined):
return ('Pro', modifications)
# Aromatic amino acids
if 'Cc2ccccc2' in segment or 'c1ccccc1' in segment:
return ('Phe', modifications)
if 'c2ccc(O)cc2' in segment:
return ('Tyr', modifications)
if 'c1c[nH]c2ccccc12' in segment:
return ('Trp', modifications)
if 'c1cnc[nH]1' in segment:
return ('His', modifications)
# Branched chain amino acids
if 'CC(C)C[C@H]' in segment or 'CC(C)C[C@@H]' in segment:
return ('Leu', modifications)
if '[C@H](CC(C)C)' in segment or '[C@@H](CC(C)C)' in segment:
return ('Leu', modifications)
if 'C(C)C' in segment and not any(pat in segment for pat in ['CC(C)C', 'C(C)C[C@H]', 'C(C)C[C@@H]']):
return ('Val', modifications)
if 'C(C)C[C@H]' in segment or 'C(C)C[C@@H]' in segment:
return ('Ile', modifications)
# Small/polar amino acids
if ('[C@H](C)' in segment or '[C@@H](C)' in segment) and 'C(C)C' not in segment:
return ('Ala', modifications)
if '[C@H](CO)' in segment:
return ('Ser', modifications)
if '[C@H](C(C)O)' in segment or '[C@@H](C(C)O)' in segment:
return ('Thr', modifications)
if '[C@H]' in segment and not any(pat in segment for pat in ['C(C)', 'CC', 'O', 'N', 'S']):
return ('Gly', modifications)
# Rest of amino acids remain the same...
# [Previous code for other amino acids]
return (None, modifications)
def parse_peptide(smiles):
"""
Parse peptide sequence with enhanced Proline recognition
"""
# Split on peptide bonds while preserving cycle numbers
bond_pattern = r'(NC\(=O\)|N\(C\)C\(=O\)|N\dC\(=O\)|OC\(=O\))'
segments = re.split(bond_pattern, smiles)
segments = [s for s in segments if s]
sequence = []
i = 0
while i < len(segments):
segment = segments[i]
next_segment = segments[i+1] if i+1 < len(segments) else None
prev_segment = segments[i-1] if i > 0 else None
# Skip pure bond patterns
if re.match(r'.*C\(=O\)$', segment):
i += 1
continue
residue, modifications = identify_residue(segment, next_segment, prev_segment)
if residue:
# Format residue with modifications
formatted_residue = residue
if modifications:
formatted_residue += f"({','.join(modifications)})"
sequence.append(formatted_residue)
i += 1
is_cyclic = is_cyclic_peptide(smiles)
# Print debug information
print("\nDetailed Analysis:")
print("Segments:", segments)
print("Found sequence:", sequence)
# Format the final sequence
if is_cyclic:
return f"cyclo({'-'.join(sequence)})"
return '-'.join(sequence)
def is_cyclic_peptide(smiles):
"""
Determine if SMILES represents a cyclic peptide by checking:
1. Proper cycle number pairing
2. Presence of peptide bonds between cycle points
3. Distinguishing between aromatic rings and peptide cycles
"""
cycle_info = {}
# Find all cycle numbers and their contexts
for match in re.finditer(r'(\w{3})?(\d)(\w{3})?', smiles):
number = match.group(2)
pre_context = match.group(1) or ''
post_context = match.group(3) or ''
position = match.start(2)
if number not in cycle_info:
cycle_info[number] = []
cycle_info[number].append({
'position': position,
'pre_context': pre_context,
'post_context': post_context,
'full_context': smiles[max(0, position-3):min(len(smiles), position+4)]
})
# Check each cycle
peptide_cycles = []
aromatic_cycles = []
for number, occurrences in cycle_info.items():
if len(occurrences) != 2: # Must have exactly 2 occurrences
continue
start, end = occurrences[0]['position'], occurrences[1]['position']
# Get the segment between cycle points
segment = smiles[start:end+1]
clean_segment = remove_nested_branches(segment)
# Check if this is an aromatic ring
is_aromatic = any(context['full_context'].count('c') >= 2 for context in occurrences)
# Check if this is a peptide cycle
has_peptide_bond = 'NC(=O)' in segment or 'N2C(=O)' in segment
if is_aromatic:
aromatic_cycles.append(number)
elif has_peptide_bond:
peptide_cycles.append(number)
return len(peptide_cycles) > 0, peptide_cycles, aromatic_cycles
def analyze_single_smiles(smiles):
"""Analyze a single SMILES string"""
try:
is_cyclic, peptide_cycles, aromatic_cycles = is_cyclic_peptide(smiles)
sequence = parse_peptide(smiles)
details = {
#'SMILES': smiles,
'Sequence': sequence,
'Is Cyclic': 'Yes' if is_cyclic else 'No',
#'Peptide Cycles': ', '.join(peptide_cycles) if peptide_cycles else 'None',
#'Aromatic Cycles': ', '.join(aromatic_cycles) if aromatic_cycles else 'None'
}
return details
except Exception as e:
return {
#'SMILES': smiles,
'Sequence': f'Error: {str(e)}',
'Is Cyclic': 'Error',
#'Peptide Cycles': 'Error',
#'Aromatic Cycles': 'Error'
}
"""
def annotate_cyclic_structure(mol, sequence):
'''Create annotated 2D structure with clear, non-overlapping residue labels'''
# Generate 2D coordinates
# Generate 2D coordinates
AllChem.Compute2DCoords(mol)
# Create drawer with larger size for annotations
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000) # Even larger size
# Get residue list and reverse it to match structural representation
if sequence.startswith('cyclo('):
residues = sequence[6:-1].split('-')
else:
residues = sequence.split('-')
residues = list(reversed(residues)) # Reverse the sequence
# Draw molecule first to get its bounds
drawer.drawOptions().addAtomIndices = False
drawer.DrawMolecule(mol)
drawer.FinishDrawing()
# Convert to PIL Image
img = Image.open(BytesIO(drawer.GetDrawingText()))
draw = ImageDraw.Draw(img)
try:
# Try to use DejaVuSans as it's commonly available on Linux systems
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60)
small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60)
except OSError:
try:
# Fallback to Arial if available (common on Windows)
font = ImageFont.truetype("arial.ttf", 60)
small_font = ImageFont.truetype("arial.ttf", 60)
except OSError:
# If no TrueType fonts are available, fall back to default
print("Warning: TrueType fonts not available, using default font")
font = ImageFont.load_default()
small_font = ImageFont.load_default()
# Get molecule bounds
conf = mol.GetConformer()
positions = []
for i in range(mol.GetNumAtoms()):
pos = conf.GetAtomPosition(i)
positions.append((pos.x, pos.y))
x_coords = [p[0] for p in positions]
y_coords = [p[1] for p in positions]
min_x, max_x = min(x_coords), max(x_coords)
min_y, max_y = min(y_coords), max(y_coords)
# Calculate scaling factors
scale = 150 # Increased scale factor
center_x = 1000 # Image center
center_y = 1000
# Add residue labels in a circular arrangement around the structure
n_residues = len(residues)
radius = 700 # Distance of labels from center
# Start from the rightmost point (3 o'clock position) and go counterclockwise
# Offset by -3 positions to align with structure
offset = 0 # Adjust this value to match the structure alignment
for i, residue in enumerate(residues):
# Calculate position in a circle around the structure
# Start from 0 (3 o'clock) and go counterclockwise
angle = -(2 * np.pi * ((i + offset) % n_residues) / n_residues)
# Calculate label position
label_x = center_x + radius * np.cos(angle)
label_y = center_y + radius * np.sin(angle)
# Draw residue label
text = f"{i+1}. {residue}"
bbox = draw.textbbox((label_x, label_y), text, font=font)
padding = 10
draw.rectangle([bbox[0]-padding, bbox[1]-padding,
bbox[2]+padding, bbox[3]+padding],
fill='white', outline='white')
draw.text((label_x, label_y), text,
font=font, fill='black', anchor="mm")
# Add sequence at the top with white background
seq_text = f"Sequence: {sequence}"
bbox = draw.textbbox((center_x, 100), seq_text, font=small_font)
padding = 10
draw.rectangle([bbox[0]-padding, bbox[1]-padding,
bbox[2]+padding, bbox[3]+padding],
fill='white', outline='white')
draw.text((center_x, 100), seq_text,
font=small_font, fill='black', anchor="mm")
return img
"""
def annotate_cyclic_structure(mol, sequence):
"""Create structure visualization with just the sequence header"""
# Generate 2D coordinates
AllChem.Compute2DCoords(mol)
# Create drawer with larger size for annotations
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000) # Even larger size
# Draw molecule first
drawer.drawOptions().addAtomIndices = False
drawer.DrawMolecule(mol)
drawer.FinishDrawing()
# Convert to PIL Image
img = Image.open(BytesIO(drawer.GetDrawingText()))
draw = ImageDraw.Draw(img)
small_font = ImageFont.load_default()
# Add just the sequence header at the top
seq_text = f"Sequence: {sequence}"
bbox = draw.textbbox((1000, 100), seq_text, font=small_font)
padding = 10
draw.rectangle([bbox[0]-padding, bbox[1]-padding,
bbox[2]+padding, bbox[3]+padding],
fill='white', outline='white')
draw.text((1000, 100), seq_text,
font=small_font, fill='black', anchor="mm")
return img
def create_enhanced_linear_viz(sequence, smiles):
"""
Create an enhanced linear representation showing segment identification process
with improved segment handling
"""
# Create figure with two subplots
fig = plt.figure(figsize=(15, 10))
gs = fig.add_gridspec(2, 1, height_ratios=[1, 2])
ax_struct = fig.add_subplot(gs[0])
ax_detail = fig.add_subplot(gs[1])
# Parse sequence and get residues
if sequence.startswith('cyclo('):
residues = sequence[6:-1].split('-')
else:
residues = sequence.split('-')
# Get molecule and analyze bonds
mol = Chem.MolFromSmiles(smiles)
# Split SMILES into segments for analysis
bond_pattern = r'(NC\(=O\)|N\(C\)C\(=O\)|N\dC\(=O\)|OC\(=O\))'
segments = re.split(bond_pattern, smiles)
segments = [s for s in segments if s] # Remove empty segments
# Debug print
print(f"Number of residues: {len(residues)}")
print(f"Number of segments: {len(segments)}")
print("Segments:", segments)
# Top subplot - Basic structure
ax_struct.set_xlim(0, 10)
ax_struct.set_ylim(0, 2)
num_residues = len(residues)
spacing = 9.0 / (num_residues - 1) if num_residues > 1 else 9.0
# Draw basic structure
y_pos = 1.5
for i in range(num_residues):
x_pos = 0.5 + i * spacing
# Draw amino acid box
rect = patches.Rectangle((x_pos-0.3, y_pos-0.2), 0.6, 0.4,
facecolor='lightblue', edgecolor='black')
ax_struct.add_patch(rect)
# Draw connecting bonds if not the last residue
if i < num_residues - 1:
# Find the next bond pattern after this residue
bond_segment = None
for j in range(len(segments)):
if re.match(bond_pattern, segments[j]):
if j > i*2 and j//2 == i: # Found the right bond
bond_segment = segments[j]
break
if bond_segment:
bond_type, is_n_methylated = identify_linkage_type(bond_segment)
else:
bond_type = 'peptide' # Default if not found
bond_color = 'black' if bond_type == 'peptide' else 'red'
linestyle = '-' if bond_type == 'peptide' else '--'
# Draw bond line
ax_struct.plot([x_pos+0.3, x_pos+spacing-0.3], [y_pos, y_pos],
color=bond_color, linestyle=linestyle, linewidth=2)
# Add bond type label
mid_x = x_pos + spacing/2
bond_label = f"{bond_type}"
if is_n_methylated:
bond_label += "\n(N-Me)"
ax_struct.text(mid_x, y_pos+0.1, bond_label,
ha='center', va='bottom', fontsize=10,
color=bond_color)
# Add residue label
ax_struct.text(x_pos, y_pos-0.5, residues[i],
ha='center', va='top', fontsize=14)
# Bottom subplot - Detailed breakdown
ax_detail.set_ylim(0, len(segments)+1)
ax_detail.set_xlim(0, 1)
# Create detailed breakdown
segment_y = len(segments) # Start from top
for i, segment in enumerate(segments):
y = segment_y - i
# Check if this is a bond segment
if re.match(bond_pattern, segment):
bond_type, is_n_methylated = identify_linkage_type(segment)
text = f"Bond {i//2 + 1}: {bond_type}"
if is_n_methylated:
text += " (N-methylated)"
color = 'red'
else:
# Get next and previous segments for context
next_seg = segments[i+1] if i+1 < len(segments) else None
prev_seg = segments[i-1] if i > 0 else None
residue, modifications = identify_residue(segment, next_seg, prev_seg)
text = f"Residue {i//2 + 1}: {residue}"
if modifications:
text += f" ({', '.join(modifications)})"
color = 'blue'
# Add segment analysis
ax_detail.text(0.05, y, text, fontsize=12, color=color)
ax_detail.text(0.5, y, f"SMILES: {segment}", fontsize=10, color='gray')
# If cyclic, add connection indicator
if sequence.startswith('cyclo('):
ax_struct.annotate('', xy=(9.5, y_pos), xytext=(0.5, y_pos),
arrowprops=dict(arrowstyle='<->', color='red', lw=2))
ax_struct.text(5, y_pos+0.3, 'Cyclic Connection',
ha='center', color='red', fontsize=14)
# Add titles and adjust layout
ax_struct.set_title("Peptide Structure Overview", pad=20)
ax_detail.set_title("Segment Analysis Breakdown", pad=20)
# Remove axes
for ax in [ax_struct, ax_detail]:
ax.set_xticks([])
ax.set_yticks([])
ax.axis('off')
plt.tight_layout()
return fig
def process_input(smiles_input=None, file_obj=None, show_linear=False):
"""Process input and create visualizations"""
results = []
images = []
# Handle direct SMILES input
if smiles_input:
smiles = smiles_input.strip()
# First check if it's a peptide
if not is_peptide(smiles):
return "Error: Input SMILES does not appear to be a peptide structure.", None, None
try:
# Create molecule
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return "Error: Invalid SMILES notation.", None, None
# Get sequence and cyclic information
sequence = parse_peptide(smiles)
is_cyclic, peptide_cycles, aromatic_cycles = is_cyclic_peptide(smiles)
# Create cyclic structure visualization
img_cyclic = annotate_cyclic_structure(mol, sequence)
# Create linear representation if requested
img_linear = None
if show_linear:
fig_linear = create_enhanced_linear_viz(sequence, smiles)
# Convert matplotlib figure to image
buf = BytesIO()
fig_linear.savefig(buf, format='png', bbox_inches='tight', dpi=300)
buf.seek(0)
img_linear = Image.open(buf)
plt.close(fig_linear)
# Format text output
output_text = f"Sequence: {sequence}\n"
output_text += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n"
return output_text, img_cyclic, img_linear
except Exception as e:
return f"Error processing SMILES: {str(e)}", None, None
# Handle file input
if file_obj is not None:
try:
# Handle file content based on file object type
if hasattr(file_obj, 'name'): # If it's a file path
with open(file_obj.name, 'r') as f:
content = f.read()
else: # If it's file content
content = file_obj.decode('utf-8') if isinstance(file_obj, bytes) else str(file_obj)
output_text = ""
for line in content.splitlines():
smiles = line.strip()
if smiles:
if not is_peptide(smiles):
output_text += f"Skipping non-peptide SMILES: {smiles}\n"
continue
result = analyze_single_smiles(smiles)
output_text += f"Sequence: {result['Sequence']}\n"
output_text += f"Is Cyclic: {result['Is Cyclic']}\n"
output_text += "-" * 50 + "\n"
return output_text, None, None
except Exception as e:
return f"Error processing file: {str(e)}", None, None
return "No input provided.", None, None
# Create Gradio interface with simplified examples
iface = gr.Interface(
fn=process_input,
inputs=[
gr.Textbox(
label="Enter SMILES string",
placeholder="Enter SMILES notation of peptide...",
lines=2
),
gr.File(
label="Or upload a text file with SMILES",
file_types=[".txt"],
type="binary"
),
gr.Checkbox(
label="Show linear representation"
)
],
outputs=[
gr.Textbox(
label="Analysis Results",
lines=10
),
gr.Image(
label="2D Structure with Annotations"
),
gr.Image(
label="Linear Representation"
)
],
title="Peptide Structure Analyzer and Visualizer",
description="""
Analyze and visualize peptide structures from SMILES notation:
1. Validates if the input is a peptide structure
2. Determines if the peptide is cyclic
3. Parses the amino acid sequence
4. Creates 2D structure visualization with residue annotations
5. Optional linear representation
Input: Either enter a SMILES string directly or upload a text file containing SMILES strings
Example SMILES strings (copy and paste):
```
CC(C)C[C@@H]1NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@@H](C)N(C)C(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H]2CCCN2C1=O
```
```
C(C)C[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)[C@@H](CC(C)C)NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@H](C)NC(=O)[C@H](Cc2ccccc2)NC1=O
```
""",
flagging_mode="never"
)
# Launch the app
if __name__ == "__main__":
iface.launch()