Spaces:
Running
Running
import gradio as gr | |
import re | |
import pandas as pd | |
from io import StringIO | |
import rdkit | |
from rdkit import Chem | |
from rdkit.Chem import AllChem, Draw | |
import numpy as np | |
from PIL import Image, ImageDraw, ImageFont | |
import matplotlib.pyplot as plt | |
import matplotlib.patches as patches | |
from io import BytesIO | |
def is_peptide(smiles): | |
"""Check if the SMILES represents a peptide by looking for peptide bonds""" | |
mol = Chem.MolFromSmiles(smiles) | |
if mol is None: | |
return False | |
# Look for peptide bonds: NC(=O) pattern | |
peptide_bond_pattern = Chem.MolFromSmarts('[NH][C](=O)') | |
if mol.HasSubstructMatch(peptide_bond_pattern): | |
return True | |
# Look for N-methylated peptide bonds: N(C)C(=O) pattern | |
n_methyl_pattern = Chem.MolFromSmarts('[N;H0;$(NC)](C)[C](=O)') | |
if mol.HasSubstructMatch(n_methyl_pattern): | |
return True | |
# Look for ester bonds in cyclic depsipeptides: OC(=O) pattern | |
ester_bond_pattern = Chem.MolFromSmarts('O[C](=O)') | |
if mol.HasSubstructMatch(ester_bond_pattern): | |
return True | |
return False | |
def remove_nested_branches(smiles): | |
"""Remove nested branches from SMILES string""" | |
result = '' | |
depth = 0 | |
for char in smiles: | |
if char == '(': | |
depth += 1 | |
elif char == ')': | |
depth -= 1 | |
elif depth == 0: | |
result += char | |
return result | |
def identify_linkage_type(segment): | |
""" | |
Identify the type of linkage between residues | |
Returns: tuple (type, is_n_methylated) | |
""" | |
if 'OC(=O)' in segment: | |
return ('ester', False) | |
elif 'N(C)C(=O)' in segment: | |
return ('peptide', True) # N-methylated peptide bond | |
elif 'NC(=O)' in segment: | |
return ('peptide', False) # Regular peptide bond | |
return (None, False) | |
def identify_residue(segment, next_segment=None, prev_segment=None): | |
""" | |
Identify amino acid residues with modifications and special handling for Proline | |
Returns: tuple (residue, modifications) | |
""" | |
modifications = [] | |
# Check for modifications in the next segment | |
if next_segment: | |
if 'N(C)C(=O)' in next_segment: | |
modifications.append('N-Me') | |
if 'OC(=O)' in next_segment: | |
modifications.append('O-linked') | |
# Special case for Proline - check for CCCN pattern and its cyclization | |
# Proline can appear in several patterns due to its cyclic nature | |
if any(pattern in segment for pattern in ['CCCN2', 'N2CCC', '[C@@H]2CCCN2', 'CCCN1', 'N1CCC']): | |
return ('Pro', modifications) | |
# Check if this segment is part of a Proline ring by looking at context | |
if prev_segment and next_segment: | |
if ('CCC' in segment and 'N' in next_segment) or ('N' in segment and 'CCC' in prev_segment): | |
combined = prev_segment + segment + next_segment | |
if re.search(r'CCCN.*C\(=O\)', combined): | |
return ('Pro', modifications) | |
# Aromatic amino acids | |
if 'Cc2ccccc2' in segment or 'c1ccccc1' in segment: | |
return ('Phe', modifications) | |
if 'c2ccc(O)cc2' in segment: | |
return ('Tyr', modifications) | |
if 'c1c[nH]c2ccccc12' in segment: | |
return ('Trp', modifications) | |
if 'c1cnc[nH]1' in segment: | |
return ('His', modifications) | |
# Branched chain amino acids | |
if 'CC(C)C[C@H]' in segment or 'CC(C)C[C@@H]' in segment: | |
return ('Leu', modifications) | |
if '[C@H](CC(C)C)' in segment or '[C@@H](CC(C)C)' in segment: | |
return ('Leu', modifications) | |
if 'C(C)C' in segment and not any(pat in segment for pat in ['CC(C)C', 'C(C)C[C@H]', 'C(C)C[C@@H]']): | |
return ('Val', modifications) | |
if 'C(C)C[C@H]' in segment or 'C(C)C[C@@H]' in segment: | |
return ('Ile', modifications) | |
# Small/polar amino acids | |
if ('[C@H](C)' in segment or '[C@@H](C)' in segment) and 'C(C)C' not in segment: | |
return ('Ala', modifications) | |
if '[C@H](CO)' in segment: | |
return ('Ser', modifications) | |
if '[C@H](C(C)O)' in segment or '[C@@H](C(C)O)' in segment: | |
return ('Thr', modifications) | |
if '[C@H]' in segment and not any(pat in segment for pat in ['C(C)', 'CC', 'O', 'N', 'S']): | |
return ('Gly', modifications) | |
# Rest of amino acids remain the same... | |
# [Previous code for other amino acids] | |
return (None, modifications) | |
def parse_peptide(smiles): | |
""" | |
Parse peptide sequence with enhanced Proline recognition | |
""" | |
# Split on peptide bonds while preserving cycle numbers | |
bond_pattern = r'(NC\(=O\)|N\(C\)C\(=O\)|N\dC\(=O\)|OC\(=O\))' | |
segments = re.split(bond_pattern, smiles) | |
segments = [s for s in segments if s] | |
sequence = [] | |
i = 0 | |
while i < len(segments): | |
segment = segments[i] | |
next_segment = segments[i+1] if i+1 < len(segments) else None | |
prev_segment = segments[i-1] if i > 0 else None | |
# Skip pure bond patterns | |
if re.match(r'.*C\(=O\)$', segment): | |
i += 1 | |
continue | |
residue, modifications = identify_residue(segment, next_segment, prev_segment) | |
if residue: | |
# Format residue with modifications | |
formatted_residue = residue | |
if modifications: | |
formatted_residue += f"({','.join(modifications)})" | |
sequence.append(formatted_residue) | |
i += 1 | |
is_cyclic = is_cyclic_peptide(smiles) | |
# Print debug information | |
print("\nDetailed Analysis:") | |
print("Segments:", segments) | |
print("Found sequence:", sequence) | |
# Format the final sequence | |
if is_cyclic: | |
return f"cyclo({'-'.join(sequence)})" | |
return '-'.join(sequence) | |
def is_cyclic_peptide(smiles): | |
""" | |
Determine if SMILES represents a cyclic peptide by checking: | |
1. Proper cycle number pairing | |
2. Presence of peptide bonds between cycle points | |
3. Distinguishing between aromatic rings and peptide cycles | |
""" | |
cycle_info = {} | |
# Find all cycle numbers and their contexts | |
for match in re.finditer(r'(\w{3})?(\d)(\w{3})?', smiles): | |
number = match.group(2) | |
pre_context = match.group(1) or '' | |
post_context = match.group(3) or '' | |
position = match.start(2) | |
if number not in cycle_info: | |
cycle_info[number] = [] | |
cycle_info[number].append({ | |
'position': position, | |
'pre_context': pre_context, | |
'post_context': post_context, | |
'full_context': smiles[max(0, position-3):min(len(smiles), position+4)] | |
}) | |
# Check each cycle | |
peptide_cycles = [] | |
aromatic_cycles = [] | |
for number, occurrences in cycle_info.items(): | |
if len(occurrences) != 2: # Must have exactly 2 occurrences | |
continue | |
start, end = occurrences[0]['position'], occurrences[1]['position'] | |
# Get the segment between cycle points | |
segment = smiles[start:end+1] | |
clean_segment = remove_nested_branches(segment) | |
# Check if this is an aromatic ring | |
is_aromatic = any(context['full_context'].count('c') >= 2 for context in occurrences) | |
# Check if this is a peptide cycle | |
has_peptide_bond = 'NC(=O)' in segment or 'N2C(=O)' in segment | |
if is_aromatic: | |
aromatic_cycles.append(number) | |
elif has_peptide_bond: | |
peptide_cycles.append(number) | |
return len(peptide_cycles) > 0, peptide_cycles, aromatic_cycles | |
def analyze_single_smiles(smiles): | |
"""Analyze a single SMILES string""" | |
try: | |
is_cyclic, peptide_cycles, aromatic_cycles = is_cyclic_peptide(smiles) | |
sequence = parse_peptide(smiles) | |
details = { | |
#'SMILES': smiles, | |
'Sequence': sequence, | |
'Is Cyclic': 'Yes' if is_cyclic else 'No', | |
#'Peptide Cycles': ', '.join(peptide_cycles) if peptide_cycles else 'None', | |
#'Aromatic Cycles': ', '.join(aromatic_cycles) if aromatic_cycles else 'None' | |
} | |
return details | |
except Exception as e: | |
return { | |
#'SMILES': smiles, | |
'Sequence': f'Error: {str(e)}', | |
'Is Cyclic': 'Error', | |
#'Peptide Cycles': 'Error', | |
#'Aromatic Cycles': 'Error' | |
} | |
""" | |
def annotate_cyclic_structure(mol, sequence): | |
'''Create annotated 2D structure with clear, non-overlapping residue labels''' | |
# Generate 2D coordinates | |
# Generate 2D coordinates | |
AllChem.Compute2DCoords(mol) | |
# Create drawer with larger size for annotations | |
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000) # Even larger size | |
# Get residue list and reverse it to match structural representation | |
if sequence.startswith('cyclo('): | |
residues = sequence[6:-1].split('-') | |
else: | |
residues = sequence.split('-') | |
residues = list(reversed(residues)) # Reverse the sequence | |
# Draw molecule first to get its bounds | |
drawer.drawOptions().addAtomIndices = False | |
drawer.DrawMolecule(mol) | |
drawer.FinishDrawing() | |
# Convert to PIL Image | |
img = Image.open(BytesIO(drawer.GetDrawingText())) | |
draw = ImageDraw.Draw(img) | |
try: | |
# Try to use DejaVuSans as it's commonly available on Linux systems | |
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60) | |
small_font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 60) | |
except OSError: | |
try: | |
# Fallback to Arial if available (common on Windows) | |
font = ImageFont.truetype("arial.ttf", 60) | |
small_font = ImageFont.truetype("arial.ttf", 60) | |
except OSError: | |
# If no TrueType fonts are available, fall back to default | |
print("Warning: TrueType fonts not available, using default font") | |
font = ImageFont.load_default() | |
small_font = ImageFont.load_default() | |
# Get molecule bounds | |
conf = mol.GetConformer() | |
positions = [] | |
for i in range(mol.GetNumAtoms()): | |
pos = conf.GetAtomPosition(i) | |
positions.append((pos.x, pos.y)) | |
x_coords = [p[0] for p in positions] | |
y_coords = [p[1] for p in positions] | |
min_x, max_x = min(x_coords), max(x_coords) | |
min_y, max_y = min(y_coords), max(y_coords) | |
# Calculate scaling factors | |
scale = 150 # Increased scale factor | |
center_x = 1000 # Image center | |
center_y = 1000 | |
# Add residue labels in a circular arrangement around the structure | |
n_residues = len(residues) | |
radius = 700 # Distance of labels from center | |
# Start from the rightmost point (3 o'clock position) and go counterclockwise | |
# Offset by -3 positions to align with structure | |
offset = 0 # Adjust this value to match the structure alignment | |
for i, residue in enumerate(residues): | |
# Calculate position in a circle around the structure | |
# Start from 0 (3 o'clock) and go counterclockwise | |
angle = -(2 * np.pi * ((i + offset) % n_residues) / n_residues) | |
# Calculate label position | |
label_x = center_x + radius * np.cos(angle) | |
label_y = center_y + radius * np.sin(angle) | |
# Draw residue label | |
text = f"{i+1}. {residue}" | |
bbox = draw.textbbox((label_x, label_y), text, font=font) | |
padding = 10 | |
draw.rectangle([bbox[0]-padding, bbox[1]-padding, | |
bbox[2]+padding, bbox[3]+padding], | |
fill='white', outline='white') | |
draw.text((label_x, label_y), text, | |
font=font, fill='black', anchor="mm") | |
# Add sequence at the top with white background | |
seq_text = f"Sequence: {sequence}" | |
bbox = draw.textbbox((center_x, 100), seq_text, font=small_font) | |
padding = 10 | |
draw.rectangle([bbox[0]-padding, bbox[1]-padding, | |
bbox[2]+padding, bbox[3]+padding], | |
fill='white', outline='white') | |
draw.text((center_x, 100), seq_text, | |
font=small_font, fill='black', anchor="mm") | |
return img | |
""" | |
def annotate_cyclic_structure(mol, sequence): | |
"""Create structure visualization with just the sequence header""" | |
# Generate 2D coordinates | |
AllChem.Compute2DCoords(mol) | |
# Create drawer with larger size for annotations | |
drawer = Draw.rdMolDraw2D.MolDraw2DCairo(2000, 2000) # Even larger size | |
# Draw molecule first | |
drawer.drawOptions().addAtomIndices = False | |
drawer.DrawMolecule(mol) | |
drawer.FinishDrawing() | |
# Convert to PIL Image | |
img = Image.open(BytesIO(drawer.GetDrawingText())) | |
draw = ImageDraw.Draw(img) | |
small_font = ImageFont.load_default() | |
# Add just the sequence header at the top | |
seq_text = f"Sequence: {sequence}" | |
bbox = draw.textbbox((1000, 100), seq_text, font=small_font) | |
padding = 10 | |
draw.rectangle([bbox[0]-padding, bbox[1]-padding, | |
bbox[2]+padding, bbox[3]+padding], | |
fill='white', outline='white') | |
draw.text((1000, 100), seq_text, | |
font=small_font, fill='black', anchor="mm") | |
return img | |
def create_enhanced_linear_viz(sequence, smiles): | |
""" | |
Create an enhanced linear representation showing segment identification process | |
with improved segment handling | |
""" | |
# Create figure with two subplots | |
fig = plt.figure(figsize=(15, 10)) | |
gs = fig.add_gridspec(2, 1, height_ratios=[1, 2]) | |
ax_struct = fig.add_subplot(gs[0]) | |
ax_detail = fig.add_subplot(gs[1]) | |
# Parse sequence and get residues | |
if sequence.startswith('cyclo('): | |
residues = sequence[6:-1].split('-') | |
else: | |
residues = sequence.split('-') | |
# Get molecule and analyze bonds | |
mol = Chem.MolFromSmiles(smiles) | |
# Split SMILES into segments for analysis | |
bond_pattern = r'(NC\(=O\)|N\(C\)C\(=O\)|N\dC\(=O\)|OC\(=O\))' | |
segments = re.split(bond_pattern, smiles) | |
segments = [s for s in segments if s] # Remove empty segments | |
# Debug print | |
print(f"Number of residues: {len(residues)}") | |
print(f"Number of segments: {len(segments)}") | |
print("Segments:", segments) | |
# Top subplot - Basic structure | |
ax_struct.set_xlim(0, 10) | |
ax_struct.set_ylim(0, 2) | |
num_residues = len(residues) | |
spacing = 9.0 / (num_residues - 1) if num_residues > 1 else 9.0 | |
# Draw basic structure | |
y_pos = 1.5 | |
for i in range(num_residues): | |
x_pos = 0.5 + i * spacing | |
# Draw amino acid box | |
rect = patches.Rectangle((x_pos-0.3, y_pos-0.2), 0.6, 0.4, | |
facecolor='lightblue', edgecolor='black') | |
ax_struct.add_patch(rect) | |
# Draw connecting bonds if not the last residue | |
if i < num_residues - 1: | |
# Find the next bond pattern after this residue | |
bond_segment = None | |
for j in range(len(segments)): | |
if re.match(bond_pattern, segments[j]): | |
if j > i*2 and j//2 == i: # Found the right bond | |
bond_segment = segments[j] | |
break | |
if bond_segment: | |
bond_type, is_n_methylated = identify_linkage_type(bond_segment) | |
else: | |
bond_type = 'peptide' # Default if not found | |
bond_color = 'black' if bond_type == 'peptide' else 'red' | |
linestyle = '-' if bond_type == 'peptide' else '--' | |
# Draw bond line | |
ax_struct.plot([x_pos+0.3, x_pos+spacing-0.3], [y_pos, y_pos], | |
color=bond_color, linestyle=linestyle, linewidth=2) | |
# Add bond type label | |
mid_x = x_pos + spacing/2 | |
bond_label = f"{bond_type}" | |
if is_n_methylated: | |
bond_label += "\n(N-Me)" | |
ax_struct.text(mid_x, y_pos+0.1, bond_label, | |
ha='center', va='bottom', fontsize=10, | |
color=bond_color) | |
# Add residue label | |
ax_struct.text(x_pos, y_pos-0.5, residues[i], | |
ha='center', va='top', fontsize=14) | |
# Bottom subplot - Detailed breakdown | |
ax_detail.set_ylim(0, len(segments)+1) | |
ax_detail.set_xlim(0, 1) | |
# Create detailed breakdown | |
segment_y = len(segments) # Start from top | |
for i, segment in enumerate(segments): | |
y = segment_y - i | |
# Check if this is a bond segment | |
if re.match(bond_pattern, segment): | |
bond_type, is_n_methylated = identify_linkage_type(segment) | |
text = f"Bond {i//2 + 1}: {bond_type}" | |
if is_n_methylated: | |
text += " (N-methylated)" | |
color = 'red' | |
else: | |
# Get next and previous segments for context | |
next_seg = segments[i+1] if i+1 < len(segments) else None | |
prev_seg = segments[i-1] if i > 0 else None | |
residue, modifications = identify_residue(segment, next_seg, prev_seg) | |
text = f"Residue {i//2 + 1}: {residue}" | |
if modifications: | |
text += f" ({', '.join(modifications)})" | |
color = 'blue' | |
# Add segment analysis | |
ax_detail.text(0.05, y, text, fontsize=12, color=color) | |
ax_detail.text(0.5, y, f"SMILES: {segment}", fontsize=10, color='gray') | |
# If cyclic, add connection indicator | |
if sequence.startswith('cyclo('): | |
ax_struct.annotate('', xy=(9.5, y_pos), xytext=(0.5, y_pos), | |
arrowprops=dict(arrowstyle='<->', color='red', lw=2)) | |
ax_struct.text(5, y_pos+0.3, 'Cyclic Connection', | |
ha='center', color='red', fontsize=14) | |
# Add titles and adjust layout | |
ax_struct.set_title("Peptide Structure Overview", pad=20) | |
ax_detail.set_title("Segment Analysis Breakdown", pad=20) | |
# Remove axes | |
for ax in [ax_struct, ax_detail]: | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
ax.axis('off') | |
plt.tight_layout() | |
return fig | |
def process_input(smiles_input=None, file_obj=None, show_linear=False): | |
"""Process input and create visualizations""" | |
results = [] | |
images = [] | |
# Handle direct SMILES input | |
if smiles_input: | |
smiles = smiles_input.strip() | |
# First check if it's a peptide | |
if not is_peptide(smiles): | |
return "Error: Input SMILES does not appear to be a peptide structure.", None, None | |
try: | |
# Create molecule | |
mol = Chem.MolFromSmiles(smiles) | |
if mol is None: | |
return "Error: Invalid SMILES notation.", None, None | |
# Get sequence and cyclic information | |
sequence = parse_peptide(smiles) | |
is_cyclic, peptide_cycles, aromatic_cycles = is_cyclic_peptide(smiles) | |
# Create cyclic structure visualization | |
img_cyclic = annotate_cyclic_structure(mol, sequence) | |
# Create linear representation if requested | |
img_linear = None | |
if show_linear: | |
fig_linear = create_enhanced_linear_viz(sequence, smiles) | |
# Convert matplotlib figure to image | |
buf = BytesIO() | |
fig_linear.savefig(buf, format='png', bbox_inches='tight', dpi=300) | |
buf.seek(0) | |
img_linear = Image.open(buf) | |
plt.close(fig_linear) | |
# Format text output | |
output_text = f"Sequence: {sequence}\n" | |
output_text += f"Is Cyclic: {'Yes' if is_cyclic else 'No'}\n" | |
return output_text, img_cyclic, img_linear | |
except Exception as e: | |
return f"Error processing SMILES: {str(e)}", None, None | |
# Handle file input | |
if file_obj is not None: | |
try: | |
# Handle file content based on file object type | |
if hasattr(file_obj, 'name'): # If it's a file path | |
with open(file_obj.name, 'r') as f: | |
content = f.read() | |
else: # If it's file content | |
content = file_obj.decode('utf-8') if isinstance(file_obj, bytes) else str(file_obj) | |
output_text = "" | |
for line in content.splitlines(): | |
smiles = line.strip() | |
if smiles: | |
if not is_peptide(smiles): | |
output_text += f"Skipping non-peptide SMILES: {smiles}\n" | |
continue | |
result = analyze_single_smiles(smiles) | |
output_text += f"Sequence: {result['Sequence']}\n" | |
output_text += f"Is Cyclic: {result['Is Cyclic']}\n" | |
output_text += "-" * 50 + "\n" | |
return output_text, None, None | |
except Exception as e: | |
return f"Error processing file: {str(e)}", None, None | |
return "No input provided.", None, None | |
# Create Gradio interface with simplified examples | |
iface = gr.Interface( | |
fn=process_input, | |
inputs=[ | |
gr.Textbox( | |
label="Enter SMILES string", | |
placeholder="Enter SMILES notation of peptide...", | |
lines=2 | |
), | |
gr.File( | |
label="Or upload a text file with SMILES", | |
file_types=[".txt"], | |
type="binary" | |
), | |
gr.Checkbox( | |
label="Show linear representation" | |
) | |
], | |
outputs=[ | |
gr.Textbox( | |
label="Analysis Results", | |
lines=10 | |
), | |
gr.Image( | |
label="2D Structure with Annotations" | |
), | |
gr.Image( | |
label="Linear Representation" | |
) | |
], | |
title="Peptide Structure Analyzer and Visualizer", | |
description=""" | |
Analyze and visualize peptide structures from SMILES notation: | |
1. Validates if the input is a peptide structure | |
2. Determines if the peptide is cyclic | |
3. Parses the amino acid sequence | |
4. Creates 2D structure visualization with residue annotations | |
5. Optional linear representation | |
Input: Either enter a SMILES string directly or upload a text file containing SMILES strings | |
Example SMILES strings (copy and paste): | |
``` | |
CC(C)C[C@@H]1NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@@H](C)N(C)C(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H]2CCCN2C1=O | |
``` | |
``` | |
C(C)C[C@@H]1NC(=O)[C@@H]2CCCN2C(=O)[C@@H](CC(C)C)NC(=O)[C@@H](CC(C)C)N(C)C(=O)[C@H](C)NC(=O)[C@H](Cc2ccccc2)NC1=O | |
``` | |
""", | |
flagging_mode="never" | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() |