import time import torch import torch.nn as nn from gptq import * from modelutils import * from quant import * def get_opt(model): import torch def skip(*args, **kwargs): pass torch.nn.init.kaiming_uniform_ = skip torch.nn.init.uniform_ = skip torch.nn.init.normal_ = skip from transformers import OPTForCausalLM model = OPTForCausalLM.from_pretrained(model, torch_dtype='auto') model.seqlen = model.config.max_position_embeddings return model @torch.no_grad() def opt_sequential(model, dataloader, dev): print('Starting ...') use_cache = model.config.use_cache model.config.use_cache = False layers = model.model.decoder.layers model.model.decoder.embed_tokens = model.model.decoder.embed_tokens.to(dev) model.model.decoder.embed_positions = model.model.decoder.embed_positions.to(dev) if hasattr(model.model.decoder, 'project_out') and model.model.decoder.project_out: model.model.decoder.project_out = model.model.decoder.project_out.to(dev) if hasattr(model.model.decoder, 'project_in') and model.model.decoder.project_in: model.model.decoder.project_in = model.model.decoder.project_in.to(dev) layers[0] = layers[0].to(dev) dtype = next(iter(model.parameters())).dtype inps = torch.zeros( (args.nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev ) cache = {'i': 0, 'attention_mask': None} class Catcher(nn.Module): def __init__(self, module): super().__init__() self.module = module def forward(self, inp, **kwargs): inps[cache['i']] = inp cache['i'] += 1 cache['attention_mask'] = kwargs['attention_mask'] raise ValueError layers[0] = Catcher(layers[0]) for batch in dataloader: try: model(batch[0].to(dev)) except ValueError: pass layers[0] = layers[0].module layers[0] = layers[0].cpu() model.model.decoder.embed_tokens = model.model.decoder.embed_tokens.cpu() model.model.decoder.embed_positions = model.model.decoder.embed_positions.cpu() if hasattr(model.model.decoder, 'project_out') and model.model.decoder.project_out: model.model.decoder.project_out = model.model.decoder.project_out.cpu() if hasattr(model.model.decoder, 'project_in') and model.model.decoder.project_in: model.model.decoder.project_in = model.model.decoder.project_in.cpu() torch.cuda.empty_cache() outs = torch.zeros_like(inps) attention_mask = cache['attention_mask'] print('Ready.') quantizers = {} for i in range(len(layers)): layer = layers[i].to(dev) full = find_layers(layer) if args.true_sequential: sequential = [ ['self_attn.k_proj', 'self_attn.v_proj', 'self_attn.q_proj'], ['self_attn.out_proj'], ['fc1'], ['fc2'] ] else: sequential = [list(full.keys())] for names in sequential: subset = {n: full[n] for n in names} gptq = {} for name in subset: gptq[name] = GPTQ(subset[name]) gptq[name].quantizer = Quantizer() gptq[name].quantizer.configure( args.wbits, perchannel=True, sym=args.sym, mse=False ) def add_batch(name): def tmp(_, inp, out): gptq[name].add_batch(inp[0].data, out.data) return tmp handles = [] for name in subset: handles.append(subset[name].register_forward_hook(add_batch(name))) for j in range(args.nsamples): outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask)[0] for h in handles: h.remove() for name in subset: print(f'Quantizing {name} in layer {i+1}/{len(layers)}...') scale,zero = gptq[name].fasterquant(percdamp=args.percdamp, groupsize=args.groupsize, actorder=args.act_order) quantizers['model.layers.%d.%s' % (i, name)] = (gptq[name].quantizer,scale,zero) gptq[name].free() for j in range(args.nsamples): outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask)[0] layers[i] = layer.cpu() del layer del gptq torch.cuda.empty_cache() inps, outs = outs, inps model.config.use_cache = use_cache return quantizers @torch.no_grad() def opt_eval(model, testenc, dev): print('Evaluating ...') testenc = testenc.input_ids nsamples = testenc.numel() // model.seqlen use_cache = model.config.use_cache model.config.use_cache = False layers = model.model.decoder.layers model.model.decoder.embed_tokens = model.model.decoder.embed_tokens.to(dev) model.model.decoder.embed_positions = model.model.decoder.embed_positions.to(dev) if hasattr(model.model.decoder, 'project_out') and model.model.decoder.project_out: model.model.decoder.project_out = model.model.decoder.project_out.to(dev) if hasattr(model.model.decoder, 'project_in') and model.model.decoder.project_in: model.model.decoder.project_in = model.model.decoder.project_in.to(dev) layers[0] = layers[0].to(dev) dtype = next(iter(model.parameters())).dtype inps = torch.zeros( (nsamples, model.seqlen, model.config.hidden_size), dtype=dtype, device=dev ) cache = {'i': 0, 'attention_mask': None} class Catcher(nn.Module): def __init__(self, module): super().__init__() self.module = module def forward(self, inp, **kwargs): inps[cache['i']] = inp cache['i'] += 1 cache['attention_mask'] = kwargs['attention_mask'] raise ValueError layers[0] = Catcher(layers[0]) for i in range(nsamples): batch = testenc[:, (i * model.seqlen):((i + 1) * model.seqlen)].to(dev) try: model(batch) except ValueError: pass layers[0] = layers[0].module layers[0] = layers[0].cpu() model.model.decoder.embed_tokens = model.model.decoder.embed_tokens.cpu() model.model.decoder.embed_positions = model.model.decoder.embed_positions.cpu() if hasattr(model.model.decoder, 'project_out') and model.model.decoder.project_out: model.model.decoder.project_out = model.model.decoder.project_out.cpu() if hasattr(model.model.decoder, 'project_in') and model.model.decoder.project_in: model.model.decoder.project_in = model.model.decoder.project_in.cpu() torch.cuda.empty_cache() outs = torch.zeros_like(inps) attention_mask = cache['attention_mask'] for i in range(len(layers)): print(i) layer = layers[i].to(dev) if args.nearest: subset = find_layers(layer) for name in subset: quantizer = Quantizer() quantizer.configure( args.wbits, perchannel=True, sym=False, mse=False ) W = subset[name].weight.data quantizer.find_params(W, weight=True) subset[name].weight.data = quantize( W, quantizer.scale, quantizer.zero, quantizer.maxq ).to(next(iter(layer.parameters())).dtype) for j in range(nsamples): outs[j] = layer(inps[j].unsqueeze(0), attention_mask=attention_mask)[0] layers[i] = layer.cpu() del layer torch.cuda.empty_cache() inps, outs = outs, inps if model.model.decoder.final_layer_norm is not None: model.model.decoder.final_layer_norm = model.model.decoder.final_layer_norm.to(dev) if model.model.decoder.project_out is not None: model.model.decoder.project_out = model.model.decoder.project_out.to(dev) model.lm_head = model.lm_head.to(dev) testenc = testenc.to(dev) nlls = [] for i in range(nsamples): hidden_states = inps[i].unsqueeze(0) if model.model.decoder.final_layer_norm is not None: hidden_states = model.model.decoder.final_layer_norm(hidden_states) if model.model.decoder.project_out is not None: hidden_states = model.model.decoder.project_out(hidden_states) lm_logits = model.lm_head(hidden_states) shift_logits = lm_logits[:, :-1, :].contiguous() shift_labels = testenc[ :, (i * model.seqlen):((i + 1) * model.seqlen) ][:, 1:] loss_fct = nn.CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) neg_log_likelihood = loss.float() * model.seqlen nlls.append(neg_log_likelihood) ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * model.seqlen)) print(ppl.item()) model.config.use_cache = use_cache # TODO: perform packing on GPU def opt_pack(model, quantizers, wbits, groupsize): layers = find_layers(model) layers = {n: layers[n] for n in quantizers} make_quant(model, quantizers, wbits, groupsize) qlayers = find_layers(model, [QuantLinear]) print('Packing ...') for name in qlayers: print(name) quantizers[name],scale,zero = quantizers[name] quantizers[name],scale,zero = quantizers[name].cpu(),scale.cpu(),zero.cpu() qlayers[name].pack(layers[name], scale, zero) print('Done.') return model def load_quant(model, checkpoint, wbits, groupsize, faster_kernel): from transformers import OPTConfig, OPTForCausalLM config = OPTConfig.from_pretrained(model) def noop(*args, **kwargs): pass torch.nn.init.kaiming_uniform_ = noop torch.nn.init.uniform_ = noop torch.nn.init.normal_ = noop torch.set_default_dtype(torch.half) transformers.modeling_utils._init_weights = False torch.set_default_dtype(torch.half) model = OPTForCausalLM(config) torch.set_default_dtype(torch.float) model = model.eval() layers = find_layers(model) for name in ['model.decoder.project_out', 'model.decoder.project_in', 'lm_head']: if name in layers: del layers[name] make_quant(model, layers, wbits, groupsize, faster=faster_kernel) del layers print('Loading model ...') if checkpoint.endswith('.safetensors'): from safetensors.torch import load_file as safe_load model.load_state_dict(safe_load(checkpoint)) else: model.load_state_dict(torch.load(checkpoint)) model.seqlen = model.config.max_position_embeddings print('Done.') return model def opt_multigpu(model, gpus): model.model.decoder.embed_tokens = model.model.decoder.embed_tokens.to(gpus[0]) model.model.decoder.embed_positions = model.model.decoder.embed_positions.to(gpus[0]) if hasattr(model.model.decoder, 'project_in') and model.model.decoder.project_in: model.model.decoder.project_in = model.model.decoder.project_in.to(gpus[0]) if hasattr(model.model.decoder, 'project_out') and model.model.decoder.project_out: model.model.decoder.project_out = model.model.decoder.project_out.to(gpus[-1]) if hasattr(model.model.decoder, 'final_layer_norm') and model.model.decoder.final_layer_norm: model.model.decoder.final_layer_norm = model.model.decoder.final_layer_norm.to(gpus[-1]) import copy model.lm_head = copy.deepcopy(model.lm_head).to(gpus[-1]) cache = {'mask': None} class MoveModule(nn.Module): def __init__(self, module): super().__init__() self.module = module self.dev = next(iter(self.module.parameters())).device def forward(self, *inp, **kwargs): inp = list(inp) if inp[0].device != self.dev: inp[0] = inp[0].to(self.dev) if cache['mask'] is None or cache['mask'].device != self.dev: cache['mask'] = kwargs['attention_mask'].to(self.dev) kwargs['attention_mask'] = cache['mask'] tmp = self.module(*inp, **kwargs) return tmp layers = model.model.decoder.layers pergpu = math.ceil(len(layers) / len(gpus)) for i in range(len(layers)): layers[i] = MoveModule(layers[i].to(gpus[i // pergpu])) model.gpus = gpus def benchmark(model, input_ids, check=False): input_ids = input_ids.to(model.gpus[0] if hasattr(model, 'gpus') else DEV) torch.cuda.synchronize() cache = {'past': None} def clear_past(i): def tmp(layer, inp, out): if cache['past']: cache['past'][i] = None return tmp for i, layer in enumerate(model.model.decoder.layers): layer.register_forward_hook(clear_past(i)) print('Benchmarking ...') if check: loss = nn.CrossEntropyLoss() tot = 0. def sync(): if hasattr(model, 'gpus'): for gpu in model.gpus: torch.cuda.synchronize(gpu) else: torch.cuda.synchronize() with torch.no_grad(): attention_mask = torch.ones((1, input_ids.numel()), device=DEV) times = [] for i in range(input_ids.numel()): tick = time.time() out = model( input_ids[:, i].reshape(-1), past_key_values=cache['past'], attention_mask=attention_mask[:, :(i + 1)].reshape((1, -1)) ) sync() times.append(time.time() - tick) print(i, times[-1]) if check and i != input_ids.numel() - 1: tot += loss(out.logits[0].to(DEV), input_ids[:, (i + 1)].to(DEV)).float() cache['past'] = list(out.past_key_values) del out sync() import numpy as np print('Median:', np.median(times)) if check: print('PPL:', torch.exp(tot / (input_ids.numel() - 1)).item()) if __name__ == '__main__': import argparse from datautils import * parser = argparse.ArgumentParser() parser.add_argument( 'model', type=str, help='OPT model to load; pass `facebook/opt-X`.' ) parser.add_argument( 'dataset', type=str, choices=['wikitext2', 'ptb', 'c4'], help='Where to extract calibration data from.' ) parser.add_argument( '--seed', type=int, default=0, help='Seed for sampling the calibration data.' ) parser.add_argument( '--nsamples', type=int, default=128, help='Number of calibration data samples.' ) parser.add_argument( '--percdamp', type=float, default=.01, help='Percent of the average Hessian diagonal to use for dampening.' ) parser.add_argument( '--nearest', action='store_true', help='Whether to run the RTN baseline.' ) parser.add_argument( '--wbits', type=int, default=16, choices=[2, 3, 4, 8, 16], help='#bits to use for quantization; use 16 for evaluating base model.' ) parser.add_argument( '--trits', action='store_true', help='Whether to use trits for quantization.' ) parser.add_argument( '--groupsize', type=int, default=-1, help='Groupsize to use for quantization; default uses full row.' ) parser.add_argument( '--save', type=str, default='', help='Save quantized checkpoint under this name.' ) parser.add_argument( '--save_safetensors', type=str, default='', help='Save quantized `.safetensors` checkpoint under this name.' ) parser.add_argument( '--load', type=str, default='', help='Load quantized model.' ) parser.add_argument( '--benchmark', type=int, default=0, help='Number of tokens to use for benchmarking.' ) parser.add_argument( '--check', action='store_true', help='Whether to compute perplexity during benchmarking for verification.' ) parser.add_argument( '--sym', action='store_true', help='Whether to perform symmetric quantization.' ) parser.add_argument( '--act-order', action='store_true', help='Whether to apply the activation order GPTQ heuristic' ) parser.add_argument( '--true-sequential', action='store_true', help='Whether to run in true sequential model.' ) parser.add_argument( '--new-eval', action='store_true', help='Whether to use the new PTB and C4 eval' ) parser.add_argument( '--faster-kernel', action='store_true', help='Whether to use the new faster kernel for benchmarking.' ) args = parser.parse_args() if type(args.load) is not str: args.load = args.load.as_posix() if args.load: model = load_quant(args.model, args.load, args.wbits, args.groupsize, args.faster_kernel) else: model = get_opt(args.model) model.eval() dataloader, testloader = get_loaders( args.dataset, nsamples=args.nsamples, seed=args.seed, model=args.model, seqlen=model.seqlen ) if not args.load and args.wbits < 16 and not args.nearest: tick = time.time() quantizers = opt_sequential(model, dataloader, DEV) print(time.time() - tick) if args.benchmark: gpus = [torch.device('cuda:%d' % i) for i in range(torch.cuda.device_count())] if len(gpus) > 1: opt_multigpu(model, gpus) else: model = model.to(DEV) if args.benchmark: input_ids = next(iter(dataloader))[0][:, :args.benchmark] benchmark(model, input_ids, check=args.check) if args.load: exit() datasets = ['wikitext2', 'ptb', 'c4'] if args.new_eval: datasets = ['wikitext2', 'ptb-new', 'c4-new'] for dataset in datasets: dataloader, testloader = get_loaders( dataset, seed=args.seed, model=args.model, seqlen=model.seqlen ) print(dataset) opt_eval(model, testloader, DEV) if args.save: opt_pack(model, quantizers, args.wbits, args.groupsize) torch.save(model.state_dict(), args.save) if args.save_safetensors: opt_pack(model, quantizers, args.wbits, args.groupsize) from safetensors.torch import save_file as safe_save safe_save(model.state_dict(), args.save_safetensors)