import streamlit as st
import uuid
import re
import numpy as np
import cv2
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import plotly.graph_objects as go
import plotly.figure_factory as ff
import tensorflow as tf
import keras
from keras.layers import Conv2D
from tensorflow.keras.preprocessing.image import img_to_array, array_to_img
from keras.models import load_model
# Afficher le nom et l'icone des réseaux d'un membre
def show_profile(name, linkedin_url, github_url):
st.markdown("""
""", unsafe_allow_html = True)
st.markdown(f"""
{name}
""", unsafe_allow_html = True)
# Création de bloc de texte esthétiques
def create_styled_box(text, text_color, background_color, alignment = 'left', display = 'block'):
unique_id = uuid.uuid4().hex
# Ajout de styles CSS pour le cadre avec une couleur de fond et une couleur de texte personnalisée
st.markdown(f"""
""", unsafe_allow_html = True)
# Afficher le texte dans le cadre stylisé
st.markdown(f"""
{text}
""", unsafe_allow_html = True)
# Fonction pour calculer l'intensité lumineuse moyenne d'une image
def calc_mean_intensity(image_path):
img = mpimg.imread(image_path)
# Convertir en nuances de gris si l'image est en couleur
if img.ndim == 3:
img_gray = np.dot(img[...,:3], [0.2989, 0.5870, 0.1140])
else:
img_gray = img
return np.mean(img_gray)
# Fonction pour extraire les sources depuis les urls
def source_extract(url):
pattern = re.compile(r'https?://(?:www\.)?([^/]+)')
match = pattern.search(url)
if match:
return match.group(1)
else:
return None
# Fonctions de plot des métriques
def plot_loss_curve(history):
fig = go.Figure()
fig.add_trace(go.Scatter(x = list(range(len(history['loss']))),
y = history['loss'],
mode = 'lines+markers',
name = 'Perte d\'entraînement',
marker = dict(color = 'lightblue')))
fig.add_trace(go.Scatter(x = list(range(len(history['val_loss']))),
y = history['val_loss'],
mode = 'lines+markers',
name = 'Perte de validation',
marker = dict(color = 'salmon')))
fig.update_layout(title = dict(text = "Courbe de Perte", font = dict(color = 'white')),
xaxis_title = dict(text = "Époque", font = dict(color = 'white')),
yaxis_title = dict(text = "Perte", font = dict(color = 'white')),
template = 'plotly_white',
paper_bgcolor = 'rgba(0,0,0,0)',
plot_bgcolor = 'rgba(0,0,0,0)',
legend = dict(font = dict(color = 'white')))
st.plotly_chart(fig)
def plot_precision_curve(history):
fig = go.Figure()
fig.add_trace(go.Scatter(x = list(range(len(history['precision']))),
y = history['precision'],
mode = 'lines+markers',
name = "Précision d'entraînement",
marker = dict(color = 'lightblue')))
fig.add_trace(go.Scatter(x = list(range(len(history['val_precision']))),
y = history['val_precision'],
mode = 'lines+markers',
name = 'Précision de validation',
marker = dict(color = 'salmon')))
fig.update_layout(title = dict(text = "Courbe de Précision", font = dict(color = 'white')),
xaxis_title=dict(text = "Époque", font = dict(color = 'white')),
yaxis_title=dict(text = "Précision", font = dict(color = 'white')),
template = 'plotly_white',
paper_bgcolor = 'rgba(0,0,0,0)',
plot_bgcolor = 'rgba(0,0,0,0)',
legend = dict(font = dict(color='white')))
st.plotly_chart(fig)
def plot_auc(history):
fig = go.Figure()
fig.add_trace(go.Scatter(x = list(range(len(history['auc']))),
y = history['auc'],
mode = 'lines+markers',
name = "AUC moyen d'entraînement",
marker = dict(color='lightblue')))
fig.add_trace(go.Scatter(x = list(range(len(history['val_auc']))),
y = history['val_auc'],
mode = 'lines+markers',
name = 'AUC moyen de validation',
marker=dict(color = 'salmon')))
fig.update_layout(title = "Courbe de AUC-ROC",
xaxis_title = "Époque",
yaxis_title = "Area Under Curve",
template = 'plotly_white',
paper_bgcolor = 'rgba(0,0,0,0)',
plot_bgcolor = 'rgba(0,0,0,0)',
legend = dict(font = dict(color = 'white')),
xaxis = dict(tickfont = dict(color = 'white')),
yaxis = dict(tickfont = dict(color = 'white')),
title_font = dict(color = 'white'))
st.plotly_chart(fig)
def plot_f1_score(history):
fig = go.Figure()
fig.add_trace(go.Scatter(x = list(range(len(history['f1_score']))),
y=np.mean(history['f1_score'], axis = 1),
mode = 'lines+markers',
name = "F1 Score d'entraînement",
marker = dict(color = 'lightblue')))
fig.add_trace(go.Scatter(x = list(range(len(history['val_f1_score']))),
y = np.mean(history['val_f1_score'], axis = 1),
mode = 'lines+markers',
name = 'F1 Score moyen de validation',
marker = dict(color = 'salmon')))
fig.update_layout(title = "Courbe de F1 Score",
xaxis_title = "Époque",
yaxis_title = "F1 Score",
template = 'plotly_white',
paper_bgcolor = 'rgba(0,0,0,0)',
plot_bgcolor = 'rgba(0,0,0,0)',
legend = dict(font = dict(color = 'white')),
xaxis = dict(tickfont = dict(color = 'white')),
yaxis = dict(tickfont = dict(color = 'white')),
title_font = dict(color = 'white'))
st.plotly_chart(fig)
# Plot des matrices de confusion
def plot_CM(matrix):
confusion_matrix = np.array(matrix)
class_names = ['Covid', 'Lung opacity', 'Normal', 'Viral Pneumonia']
st.title('Matrice de Confusion')
fig = ff.create_annotated_heatmap(z = confusion_matrix, x = class_names, y = class_names, colorscale = 'RdBu')
fig.update_layout(
title = 'Matrice de Confusion',
xaxis = dict(title = 'Classe Prédite'),
yaxis = dict(title = 'Classe Réelle')
)
st.plotly_chart(fig)
def plot_CM_ResNetV2():
confusion_lines = [
[192, 3, 7, 2],
[9, 148, 24, 0],
[5, 17, 139, 4],
[1, 0, 4, 165]
]
confusion_matrix = np.array(confusion_lines)
class_names = ['Covid', 'Lung opacity', 'Normal', 'Viral Pneumonia']
size = max(confusion_matrix.shape)
fig = ff.create_annotated_heatmap(z=confusion_matrix, x=class_names, y=class_names, colorscale='Cividis')
fig.update_layout(
width=size*140,
height=size*140,
xaxis=dict(title='Classe Prédite'),
yaxis=dict(title='Classe Réelle')
)
st.plotly_chart(fig)
def plot_CM_ResNet121():
confusion_lines = [
[181, 11, 11, 1],
[8, 148, 25, 0],
[10, 17, 135, 3],
[2, 0, 1, 167]
]
confusion_matrix = np.array(confusion_lines)
class_names = ['Covid', 'Lung opacity', 'Normal', 'Viral Pneumonia']
size = max(confusion_matrix.shape)
fig = ff.create_annotated_heatmap(z=confusion_matrix, x=class_names, y=class_names, colorscale='Cividis')
fig.update_layout(
width=size*140,
height=size*140,
xaxis=dict(title='Classe Prédite'),
yaxis=dict(title='Classe Réelle')
)
st.plotly_chart(fig)
def plot_CM_DenseNet201():
confusion_lines = [
[190, 5, 7, 2],
[6, 156, 19, 0],
[4, 21, 139, 1],
[1, 0, 0, 169]
]
confusion_matrix = np.array(confusion_lines)
class_names = ['Covid', 'Lung opacity', 'Normal', 'Viral Pneumonia']
size = max(confusion_matrix.shape)
fig = ff.create_annotated_heatmap(z=confusion_matrix, x=class_names, y=class_names, colorscale='Cividis')
fig.update_layout(
width=size*140,
height=size*140,
xaxis=dict(title='Classe Prédite'),
yaxis=dict(title='Classe Réelle')
)
st.plotly_chart(fig)
def plot_CM_VGG16():
confusion_lines = [
[178, 5, 9, 2],
[4, 152, 17, 0],
[2, 11, 160, 3],
[0, 0, 4, 175]
]
confusion_matrix = np.array(confusion_lines)
class_names = ['Covid', 'Lung opacity', 'Normal', 'Viral Pneumonia']
size = max(confusion_matrix.shape)
fig = ff.create_annotated_heatmap(z=confusion_matrix, x=class_names, y=class_names, colorscale='Cividis')
fig.update_layout(
width=size*140,
height=size*140,
xaxis=dict(title='Classe Prédite'),
yaxis=dict(title='Classe Réelle')
)
st.plotly_chart(fig)
def plot_CM_VGG19():
confusion_lines = [
[182, 7, 3, 0],
[7, 158, 8, 0],
[8, 21, 142, 5],
[1, 1, 3, 174]
]
confusion_matrix = np.array(confusion_lines)
class_names = ['Covid', 'Lung opacity', 'Normal', 'Viral Pneumonia']
size = max(confusion_matrix.shape)
fig = ff.create_annotated_heatmap(z=confusion_matrix, x=class_names, y=class_names, colorscale='Cividis')
fig.update_layout(
width=size*140,
height=size*140,
xaxis=dict(title='Classe Prédite'),
yaxis=dict(title='Classe Réelle')
)
st.plotly_chart(fig)
def plot_CM_ConvnextTiny():
confusion_lines = [
[122, 11, 19, 0],
[13, 142, 15, 0],
[17, 14, 144, 1],
[4, 1, 7, 168]
]
confusion_matrix = np.array(confusion_lines)
class_names = ['Covid', 'Lung opacity', 'Normal', 'Viral Pneumonia']
size = max(confusion_matrix.shape)
fig = ff.create_annotated_heatmap(z=confusion_matrix, x=class_names, y=class_names, colorscale='Cividis')
fig.update_layout(
width=size*140,
height=size*140,
xaxis=dict(title='Classe Prédite'),
yaxis=dict(title='Classe Réelle')
)
st.plotly_chart(fig)
def plot_CM_ConvnextBase():
confusion_lines = [
[168, 9, 15, 0],
[9, 152, 12, 0],
[12, 8, 153, 3],
[2, 0, 8, 169]
]
confusion_matrix = np.array(confusion_lines)
class_names = ['Covid', 'Lung opacity', 'Normal', 'Viral Pneumonia']
size = max(confusion_matrix.shape)
fig = ff.create_annotated_heatmap(z=confusion_matrix, x=class_names, y=class_names, colorscale='Cividis')
fig.update_layout(
width=size*140,
height=size*140,
xaxis=dict(title='Classe Prédite'),
yaxis=dict(title='Classe Réelle')
)
st.plotly_chart(fig)
def plot_CM_EfficientNet_B4():
confusion_lines = [
[177, 17, 10, 0],
[3, 148, 30, 0],
[1, 13, 151, 0],
[2, 1, 9, 158]
]
confusion_matrix = np.array(confusion_lines)
class_names = ['Covid', 'Lung opacity', 'Normal', 'Viral Pneumonia']
size = max(confusion_matrix.shape)
fig = ff.create_annotated_heatmap(z=confusion_matrix, x=class_names, y=class_names, colorscale='Cividis')
fig.update_layout(
width=size*140,
height=size*140,
xaxis=dict(title='Classe Prédite'),
yaxis=dict(title='Classe Réelle')
)
st.plotly_chart(fig)
def plot_CM_VGG16_FT():
confusion_lines = [
[229, 7, 6, 0],
[1, 198, 16, 1],
[7, 6, 199, 4],
[0, 0, 1, 225]
]
confusion_matrix = np.array(confusion_lines)
class_names = ['Covid', 'Lung opacity', 'Normal', 'Viral Pneumonia']
size = max(confusion_matrix.shape)
fig = ff.create_annotated_heatmap(z=confusion_matrix, x=class_names, y=class_names, colorscale='Cividis')
fig.update_layout(
width=size*140,
height=size*140,
xaxis=dict(title='Classe Prédite'),
yaxis=dict(title='Classe Réelle')
)
st.plotly_chart(fig)
def plot_CM_ResNetFT():
confusion_lines = [
[278, 6, 3, 1],
[3, 242, 16, 0],
[7, 38, 197, 17],
[2, 1, 0, 265]
]
confusion_matrix = np.array(confusion_lines)
class_names = ['Covid', 'Lung opacity', 'Normal', 'Viral Pneumonia']
size = max(confusion_matrix.shape)
fig = ff.create_annotated_heatmap(z=confusion_matrix, x=class_names, y=class_names, colorscale='Cividis')
fig.update_layout(
width=size*140,
height=size*140,
xaxis=dict(title='Classe Prédite'),
yaxis=dict(title='Classe Réelle')
)
st.plotly_chart(fig)
def plot_CM_DenseNetFT():
confusion_lines = [
[285, 1, 2, 0],
[3,235 , 23, 0],
[5, 17, 232, 5],
[0, 0, 3, 265]
]
confusion_matrix = np.array(confusion_lines)
class_names = ['Covid', 'Lung opacity', 'Normal', 'Viral Pneumonia']
size = max(confusion_matrix.shape)
fig = ff.create_annotated_heatmap(z=confusion_matrix, x=class_names, y=class_names, colorscale='Cividis')
fig.update_layout(
width=size*140,
height=size*140,
xaxis=dict(title='Classe Prédite'),
yaxis=dict(title='Classe Réelle')
)
st.plotly_chart(fig)
def plot_CM_ENetB4():
confusion_lines = [
[282, 2, 3, 1],
[4, 244, 13, 0],
[2, 22, 220, 15],
[1, 0, 0, 267]
]
confusion_matrix = np.array(confusion_lines)
class_names = ['Covid', 'Lung opacity', 'Normal', 'Viral Pneumonia']
size = max(confusion_matrix.shape)
fig = ff.create_annotated_heatmap(z=confusion_matrix, x=class_names, y=class_names, colorscale='Cividis')
fig.update_layout(
width=size*140,
height=size*140,
xaxis=dict(title='Classe Prédite'),
yaxis=dict(title='Classe Réelle')
)
st.plotly_chart(fig)
# GRAD-CAM
def make_gradcam_heatmap(img_array, model, last_conv_layer_name, pred_index=None):
model_output = model.output if isinstance(model.output, list) else [model.output]
grad_model = tf.keras.models.Model(
inputs=model.inputs,
outputs=[model.get_layer(last_conv_layer_name).output] + model_output
)
with tf.GradientTape() as tape:
last_conv_layer_output, preds = grad_model(img_array)
if pred_index is None:
pred_index = tf.argmax(preds[0])
class_channel = preds[:, pred_index]
grads = tape.gradient(class_channel, last_conv_layer_output)
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
last_conv_layer_output = last_conv_layer_output[0]
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
heatmap = tf.squeeze(heatmap)
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
return heatmap.numpy()
def save_and_display_gradcam(img, heatmap, alpha=0.4):
heatmap = np.uint8(255 * heatmap)
jet = plt.cm.jet
jet_colors = jet(np.arange(256))[:, :3]
jet_heatmap = jet_colors[heatmap]
jet_heatmap = array_to_img(jet_heatmap)
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
jet_heatmap = img_to_array(jet_heatmap)
superimposed_img = jet_heatmap * alpha + img
superimposed_img = array_to_img(superimposed_img)
return superimposed_img