import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # Load Fashion MNIST dataset (built-in) fashion_mnist = tf.keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() # Class names in the dataset class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] # Normalize pixel values to [0,1] train_images = train_images / 255.0 test_images = test_images / 255.0 # Build a simple neural network model model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10) ]) # Compile the model model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # Train the model model.fit(train_images, train_labels, epochs=10) # Evaluate on test data test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print('\nTest accuracy:', test_acc) # Save the model model.save('fashion_mnist_model.h5') # Optional: Test prediction and plot one image probability_model = tf.keras.Sequential([model, tf.keras.layers.Softmax()]) predictions = probability_model.predict(test_images) print("Predicted label for first test image:", class_names[np.argmax(predictions[0])]) import matplotlib.pyplot as plt plt.figure() plt.imshow(test_images[0], cmap=plt.cm.binary) plt.title(class_names[test_labels[0]]) plt.show()