import os import shutil import gradio as gr from app_modules.presets import * from clc.langchain_application import LangChainApplication os.environ["CUDA_VISIBLE_DEVICES"] = '0' # 修改成自己的配置!!! class LangChainCFG: llm_model_name = 'THUDM/chatglm-6b-int4-qe' # 本地模型文件 or huggingface远程仓库 embedding_model_name = 'GanymedeNil/text2vec-large-chinese' # 检索模型文件 or huggingface远程仓库 vector_store_path = './cache' docs_path = './docs' kg_vector_stores = { '中文维基百科': './cache/zh_wikipedia', '大规模金融研报知识图谱': '.cache/financial_research_reports', '初始化知识库': '.cache', } # 可以替换成自己的知识库,如果没有需要设置为None # kg_vector_stores=None config = LangChainCFG() application = LangChainApplication(config) def get_file_list(): if not os.path.exists("docs"): return [] return [f for f in os.listdir("docs")] file_list = get_file_list() def upload_file(file): if not os.path.exists("docs"): os.mkdir("docs") filename = os.path.basename(file.name) shutil.move(file.name, "docs/" + filename) # file_list首位插入新上传的文件 file_list.insert(0, filename) application.source_service.add_document("docs/" + filename) return gr.Dropdown.update(choices=file_list, value=filename) def set_knowledge(kg_name, history): try: application.source_service.load_vector_store(config.kg_vector_stores[kg_name]) msg_status = f'{kg_name}知识库已成功加载' except Exception as e: msg_status = f'{kg_name}知识库未成功加载' return history + [[None, msg_status]] def clear_session(): return '', None def predict(input, large_language_model, embedding_model, top_k, use_web, history=None): # print(large_language_model, embedding_model) print(input) if history == None: history = [] if use_web == '使用': web_content = application.source_service.search_web(query=input) else: web_content = '' resp = application.get_knowledge_based_answer( query=input, history_len=1, temperature=0.1, top_p=0.9, top_k=top_k, web_content=web_content, chat_history=history ) history.append((input, resp['result'])) search_text = '' for idx, source in enumerate(resp['source_documents'][:4]): sep = f'----------【搜索结果{idx + 1}:】---------------\n' search_text += f'{sep}\n{source.page_content}\n\n' print(search_text) search_text += "----------【网络检索内容】-----------\n" search_text += web_content return '', history, history, search_text with open("assets/custom.css", "r", encoding="utf-8") as f: customCSS = f.read() with gr.Blocks(css=customCSS, theme=small_and_beautiful_theme) as demo: gr.Markdown("""