import streamlit as st import pandas as pd import numpy as np st.title('Uber pickups in NYC') DATE_COLUMN = 'date/time' DATA_URL = ('https://s3-us-west-2.amazonaws.com/' 'streamlit-demo-data/uber-raw-data-sep14.csv.gz') @st.cache def load_data(): data = pd.read_csv(DATA_URL) lowercase = lambda x: str(x).lower() data.rename(lowercase, axis='columns', inplace=True) data.drop(columns='base', inplace=True) data[DATE_COLUMN] = pd.to_datetime(data[DATE_COLUMN]) return data data_load_state = st.text('Loading data...') data = load_data() data_load_state.text("Done! (using st.cache)") if st.checkbox('Show raw data'): st.subheader('Raw data') st.write(data) st.subheader('Number of pickups by hour') hist_values = np.histogram(data[DATE_COLUMN].dt.hour, bins=24, range=(0,24))[0] st.bar_chart(hist_values) # Some number in the range 0-23 hour_to_filter = st.slider('hour', 0, 23, 17) filtered_data = data[data[DATE_COLUMN].dt.hour == hour_to_filter] st.subheader('Map of all pickups at %s:00' % hour_to_filter) st.map(filtered_data)