import os import json import random from config import DATA_ROOT SDD_ROOT = os.path.join(DATA_ROOT, 'SDD_anomaly_detection') class SDDSolver(object): CLSNAMES = [ 'SDD', ] def __init__(self, root=SDD_ROOT, train_ratio=0.5): self.root = root self.meta_path = f'{root}/meta.json' self.train_ratio = train_ratio def run(self): self.generate_meta_info() def generate_meta_info(self): info = dict(train={}, test={}) for cls_name in self.CLSNAMES: cls_dir = f'{self.root}/{cls_name}' for phase in ['train', 'test']: cls_info = [] species = os.listdir(f'{cls_dir}/{phase}') for specie in species: is_abnormal = True if specie not in ['good'] else False img_names = os.listdir(f'{cls_dir}/{phase}/{specie}') mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None img_names.sort() mask_names.sort() if mask_names is not None else None for idx, img_name in enumerate(img_names): info_img = dict( img_path=f'{cls_name}/{phase}/{specie}/{img_name}', mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '', cls_name=cls_name, specie_name=specie, anomaly=1 if is_abnormal else 0, ) cls_info.append(info_img) info[phase][cls_name] = cls_info with open(self.meta_path, 'w') as f: f.write(json.dumps(info, indent=4) + "\n") if __name__ == '__main__': runner = SDDSolver(root=SDD_ROOT) runner.run()