import gradio as gr from huggingface_hub import InferenceClient # Initialize the Hugging Face Inference Client client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond(message, history, system_message, max_tokens, temperature, top_p): """ Handles user input and generates a response using the Hugging Face model. """ try: # Construct the conversation context messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) # Generate the response response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True ): token = message.choices[0].delta.content response += token yield response except Exception as e: yield f"Error: {str(e)}" # Create the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful assistant.", label="System Message"), gr.Slider(minimum=1, maximum=2048, value=512, label="Max Tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p (Nucleus Sampling)"), ] ) # Launch the app if __name__ == "__main__": demo.launch()