LEURN

A Generative and Explainable Neural Network for Tabular Data

Caglar Aytekin

Outline

* Motivation
* LEURN

* Example

Motivation : Neural Networks are Decision Trees

* Neural Networks with piece-wise linear activations are:
* Multivariate decision trees with factorized decision rules.

 2-layer fully-connected neural network
«y =Wo(Wyx + Bo) + B

 Multivariate rule-set:
° Wng-I_ﬁOO >0,W§1x+ﬁ01 >O,

t
I
I
I
i
I
I
I
I
I
I
I
I

e Factorization:
o 2F possible effective matrices

T T ST T
o0Wio Xp >0 01Wio Xp >0 10Wio Xg >0 11Wig X9 >0

T T T . T . T . T . T T
’uuuw-zu Xo‘ 001W20 Xo | | 010W20 Xo| |011Wap Xu‘ ‘mowm Xu‘ ‘tULWQU Xu‘ ‘IIDWQEJ Xo | [111Wa20 Xp

htt ps ://a rX|V. o) rg /a bS/z 2 10 . 05 189 Figure 1. Decision Tree for a 2-layer ReL.U Neural Network

https://arxiv.org/abs/2210.05189

Motivation

* Case: Electricity Demand

* Factors: Temperature (T), humidity (H), wind (W), sunlight (L), season (S),
precipitation (P), weekday (D), month (M), etc.

* 5-layer neural networks will give you something like this:

* 0.9T+0.7H-1.2W+0.5L+0.35-0.8P+0.4D+0.6M+2.5>0

e -0.5T+0.8H+1.1W+0.4L-0.95+0.7P-0.3D+0.5M+3.0>0

e 1.2T-0.6H+0.7W-1.3L+0.95+1.1P-0.4D+0.8M+1.0>0

e -1.1T+0.9H+0.6W+1.4L+0.25-0.5P+1.0D-0.7M+2.8>0

* 0.8T-1.2H+0.4W+0.7L+1.15+0.9P+0.3D-0.6M+4.5>0

* |f above holds, then there will be increase in demand

* Can you explain this? Given these rules, can you seamlessly generate new data?

Motivation

* “Regular” Decision Trees can give you this:

e (0<T<1.2),(-0.5<H<25),(0.1<W<34),(1.0<L<4.5),(-2<5<0.8), (0.5
<P<2.0),(-1.5<D<1.0),(0.2<M<2.8)

* Easy to explain, easy to generate new samples. But they are not as powerful
as neural networks in terms of representational capacity.

* LEURN : Learning Univariate Rules by Neural Networks

 Combines the representational power of “regular” neural networks and
explainability and seamless data generation of “regular” decision trees.

LEURN

* Define Encoding Layer:

* Takes NN input x and a vector called 7, returns: sign(x — 1)
e e(x,7) = sign(x — 1)
* Optional: apply dropout here

* Start by a directly learned 7 : 7

* First encoding: ey = e(x, 7y)

e Next threshold: 7, = W ey + [

* Next encoding and threshold: e; = e(x, 1), 7, = Wileo, + b4

e Final Iayer: O'(WnTeo;n + ,Bn)

* o :linear, sigmoid, softmax for regression, binary classification and multiclass
classification respectively.

LEURN

* Univariate
* Only non-linearity is at encodings:
e e(x,T) =sign(x — 1)
* Partitioning (-1 or 1) operates separately on each feature.
* Exponential representation power
_ wT
* 71 =Wy e+ Bo
* Based on e, there are 2l€0l possible effective matrices and hence
210l possible next thresholds

LEURN

* Explanations:

* Categories

* We store all thresholds : 7.,
* These form n number of thresholds for each input feature
* Where input falls according to these thresholds are the only determining factor in NN output
* Thus, we find lower and upper boundaries for each feature

* Contributions
* Final encoding eg.,, is a binary (-1 or 1) signal
* Every binary number here is directly associated with a feature (eg eyo comes from feature 0)

* Notice that last layer is (W] eq.,, + B,,), s0 every feature has a distinct contribution in last
result

* These contributions are summed per feature and directly gives additive contribution

LEURN

e Generation

* Generation from boundaries (eg data anonymization)

» Simply calculate explanation (lower and upper boundaries per feature) for input sample
X0

* Generate new sample x, by randomly sampling from these lower and upper boundaries

* Aslong as the category is same, neural network result is exactly the same

* Hence, we can anonymize x, by X,

* Generation from scratch

 Randomly assign -1 or 1 to encodings in each layer

* Not all paths are viable (one has to assign either 1 or -1), take this into consideration by
monitoring upper and lower bounds per feature during layer-by-layer progression.

e Example: In an early layer 0<x<1 was found, new threshold is 2, encoding has to be -1.
* Find resulting upper and lower boundaries
e Sample from those boundaries

LEURN

* LEURN-specific considerations:

* Encoding Layer
* For efficient learning in the backwards pass, we use derivatives of tanh(x — 1)
* For even further efficient learning, in first few epochs we use:
* (a)sign(x —1) + (1 — a)tanh(x — 1)
* And gradually increase a to 1

* Note: model is not monitored for saving until @ = 1, unless resulting model isn’t a decision
tree.

* Normalizations
* We normalize inputs so that they are in (-1,1) range
* Initialization of weights
* We know encodings will be binary (-1 or 1), and input range is (-1,1), hence we initialize Wl-T

randomly (uniform) between (— 1/Ieo-n| , 1/Ieo-nl)' ensuring outputs are in (-1,1) range and
serves as good thresholds to NN input (which is also in (-1,1) range)

LEURN

* General considerations:

 Handling categorical values
* All categorical values are label encoded
* An embedding layer is learned for each category

* Length of embedding layer is extracted according to formula:
max(2,log2(category_number))

	Slide 1: LEURN A Generative and Explainable Neural Network for Tabular Data
	Slide 2: Outline
	Slide 3: Motivation : Neural Networks are Decision Trees
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: LEURN
	Slide 7: LEURN
	Slide 8: LEURN
	Slide 9: LEURN
	Slide 10: LEURN
	Slide 11: LEURN

