A Generative and Explainable Neural Network for Tabular Data

Caglar Aytekin

Outline

Motivation

• LEURN

• Example

Motivation: Neural Networks are Decision Trees

- Neural Networks with piece-wise linear activations are:
 - Multivariate decision trees with factorized decision rules.
- 2-layer fully-connected neural network

•
$$y = W_1^T \sigma(W_0^T x + \beta_0) + \beta_1$$

Multivariate rule-set:

•
$$w_{00}^T x + \beta_{00} > 0$$
, $w_{01}^T x + \beta_{01} > 0$, ...

- Factorization:
 - 2^F Possible effective matrices

Motivation

- Case: Electricity Demand
 - Factors: Temperature (T), humidity (H), wind (W), sunlight (L), season (S), precipitation (P), weekday (D), month (M), etc.
 - 5-layer neural networks will give you something like this:
 - 0.9T+0.7H-1.2W+0.5L+0.3S-0.8P+0.4D+0.6M+2.5>0
 - -0.5T+0.8H+1.1W+0.4L-0.9S+0.7P-0.3D+0.5M+3.0>0
 - 1.2T-0.6H+0.7W-1.3L+0.9S+1.1P-0.4D+0.8M+1.0>0
 - -1.1T+0.9H+0.6W+1.4L+0.2S-0.5P+1.0D-0.7M+2.8>0
 - 0.8T-1.2H+0.4W+0.7L+1.1S+0.9P+0.3D-0.6M+4.5>0
 - If above holds, then there will be increase in demand
 - Can you explain this? Given these rules, can you seamlessly generate new data?

Motivation

- "Regular" Decision Trees can give you this:
 - (0 < T < 1.2), (-0.5 < H < 2.5), (0.1 < W < 3.4), (1.0 < L < 4.5), (-2 < S < 0.8), (0.5 < P < 2.0), (-1.5 < D < 1.0), (0.2 < M < 2.8)
 - Easy to explain, easy to generate new samples. But they are not as powerful as neural networks in terms of representational capacity.
- LEURN: Learning Univariate Rules by Neural Networks
 - Combines the representational power of "regular" neural networks and explainability and seamless data generation of "regular" decision trees.

- Define Encoding Layer:
 - Takes NN input x and a vector called τ , returns: $sign(x-\tau)$
 - $e(x,\tau) = sign(x-\tau)$
 - Optional: apply dropout here
- Start by a directly learned $\tau : \tau_0$
- First encoding: $e_0 = e(x, \tau_0)$
- Next threshold: $\tau_1 = W_0^T e_0 + \beta_0$
- Next encoding and threshold: $e_1 = e(x, \tau_1)$, $\tau_2 = W_1^T e_{0:1} + \beta_1$
- •
- Final layer: $\sigma(W_n^T e_{0:n} + \beta_n)$
 - σ : linear, sigmoid, softmax for regression, binary classification and multiclass classification respectively.

- Univariate
 - Only non-linearity is at encodings:
 - $e(x,\tau) = sign(x-\tau)$
 - Partitioning (-1 or 1) operates separately on each feature.
- Exponential representation power
 - $\tau_1 = W_0^T e_0 + \beta_0$
 - Based on e_0 , there are $2^{|e_0|}$ possible effective matrices and hence $2^{|e_0|}$ possible next thresholds

Explanations:

- Categories
 - We store all thresholds : $\tau_{0:n}$
 - These form *n* number of thresholds for each input feature
 - Where input falls according to these thresholds are the only determining factor in NN output
 - Thus, we find lower and upper boundaries for each feature

Contributions

- Final encoding $e_{0:n}$ is a binary (-1 or 1) signal
 - Every binary number here is directly associated with a feature (eg e_{00} comes from feature 0)
 - Notice that last layer is $\sigma(W_n^T e_{0:n} + \beta_n)$, so every feature has a distinct contribution in last result
 - These contributions are summed per feature and directly gives additive contribution

Generation

- Generation from boundaries (eg data anonymization)
 - Simply calculate explanation (lower and upper boundaries per feature) for input sample x_0
 - Generate new sample $\overline{x_0}$ by randomly sampling from these lower and upper boundaries
 - As long as the category is same, neural network result is exactly the same
 - Hence, we can anonymize x_0 by $\overline{x_0}$
- Generation from scratch
 - Randomly assign -1 or 1 to encodings in each layer
 - Not all paths are viable (one has to assign either 1 or -1), take this into consideration by monitoring upper and lower bounds per feature during layer-by-layer progression.
 - Example: In an early layer 0<x<1 was found, new threshold is 2, encoding has to be -1.
 - Find resulting upper and lower boundaries
 - Sample from those boundaries

- LEURN-specific considerations:
 - Encoding Layer
 - For efficient learning in the backwards pass, we use derivatives of $tanh(x-\tau)$
 - For even further efficient learning, in first few epochs we use:
 - (α) sign $(x \tau) + (1 \alpha)$ tanh $(x \tau)$
 - And gradually increase α to 1
 - Note: model is not monitored for saving until $\alpha=1$, unless resulting model isn't a decision tree.
 - Normalizations
 - We normalize inputs so that they are in (-1,1) range
 - Initialization of weights
 - We know encodings will be binary (-1 or 1), and input range is (-1,1), hence we initialize W_i^T randomly (uniform) between $\left(-\frac{1}{|e_{0:n}|},\frac{1}{|e_{0:n}|}\right)$, ensuring outputs are in (-1,1) range and serves as good thresholds to NN input (which is also in (-1,1) range)

- General considerations:
 - Handling categorical values
 - All categorical values are label encoded
 - An embedding layer is learned for each category
 - Length of embedding layer is extracted according to formula: max(2, log2(category_number))