
LEURN
A Generative and Explainable Neural Network for Tabular Data

Caglar Aytekin

Outline

• Motivation

• LEURN

• Example

Motivation : Neural Networks are Decision Trees

• Neural Networks with piece-wise linear activations are:
• Multivariate decision trees with factorized decision rules.

• 2-layer fully-connected neural network
• 𝑦 = 𝑊1

𝑇𝜎 𝑊0
𝑇𝑥 + 𝛽0 + 𝛽1

• Multivariate rule-set:
• 𝑤00

𝑇 𝑥 + 𝛽00 > 0 , 𝑤01
𝑇 𝑥 + 𝛽01 > 0 , …

• Factorization:
• 2𝐹 Possible effective matrices

https://arxiv.org/abs/2210.05189

https://arxiv.org/abs/2210.05189

Motivation

• Case: Electricity Demand
• Factors: Temperature (T), humidity (H), wind (W), sunlight (L), season (S),

precipitation (P), weekday (D), month (M), etc.

• 5-layer neural networks will give you something like this:
• 0.9T+0.7H−1.2W+0.5L+0.3S−0.8P+0.4D+0.6M+2.5>0

• −0.5T+0.8H+1.1W+0.4L−0.9S+0.7P−0.3D+0.5M+3.0>0

• 1.2T−0.6H+0.7W−1.3L+0.9S+1.1P−0.4D+0.8M+1.0>0

• −1.1T+0.9H+0.6W+1.4L+0.2S−0.5P+1.0D−0.7M+2.8>0

• 0.8T−1.2H+0.4W+0.7L+1.1S+0.9P+0.3D−0.6M+4.5>0

• If above holds, then there will be increase in demand

• Can you explain this? Given these rules, can you seamlessly generate new data?

Motivation

• “Regular” Decision Trees can give you this:
• (0 < T < 1.2), (-0.5 < H < 2.5), (0.1 < W < 3.4), (1.0 < L < 4.5), (-2 < S < 0.8), (0.5

< P < 2.0), (-1.5 < D < 1.0), (0.2 < M < 2.8)

• Easy to explain, easy to generate new samples. But they are not as powerful
as neural networks in terms of representational capacity.

• LEURN : Learning Univariate Rules by Neural Networks
• Combines the representational power of “regular” neural networks and

explainability and seamless data generation of “regular” decision trees.

LEURN

• Define Encoding Layer:
• Takes NN input 𝑥 and a vector called 𝜏 , returns: 𝑠𝑖𝑔𝑛(𝑥 − 𝜏)

• 𝑒 𝑥, 𝜏 = 𝑠𝑖𝑔𝑛(𝑥 − 𝜏)
• Optional: apply dropout here

• Start by a directly learned 𝜏 : 𝜏0
• First encoding: 𝑒0 = 𝑒 𝑥, 𝜏0
• Next threshold: 𝜏1 = 𝑊0

𝑇𝑒0 + 𝛽0
• Next encoding and threshold: 𝑒1 = 𝑒 𝑥, 𝜏1 , 𝜏2 = 𝑊1

𝑇𝑒0:1 + 𝛽1
• …
• Final layer: 𝜎 𝑊𝑛

𝑇𝑒0:𝑛 + 𝛽𝑛
• 𝜎 : linear, sigmoid, softmax for regression, binary classification and multiclass

classification respectively.

LEURN

• Univariate
• Only non-linearity is at encodings:

• 𝑒 𝑥, 𝜏 = 𝑠𝑖𝑔𝑛(𝑥 − 𝜏)

• Partitioning (-1 or 1) operates separately on each feature.

• Exponential representation power
• 𝜏1 = 𝑊0

𝑇𝑒0 + 𝛽0
• Based on 𝑒0, there are 2 𝑒0 possible effective matrices and hence
2 𝑒0 possible next thresholds

LEURN

• Explanations:
• Categories

• We store all thresholds : 𝜏0:𝑛
• These form 𝑛 number of thresholds for each input feature

• Where input falls according to these thresholds are the only determining factor in NN output

• Thus, we find lower and upper boundaries for each feature

• Contributions
• Final encoding 𝑒0:𝑛 is a binary (-1 or 1) signal

• Every binary number here is directly associated with a feature (eg 𝑒00 comes from feature 0)

• Notice that last layer is 𝜎 𝑊𝑛
𝑇𝑒0:𝑛 + 𝛽𝑛 , so every feature has a distinct contribution in last

result

• These contributions are summed per feature and directly gives additive contribution

LEURN

• Generation
• Generation from boundaries (eg data anonymization)

• Simply calculate explanation (lower and upper boundaries per feature) for input sample
𝑥0

• Generate new sample 𝑥0 by randomly sampling from these lower and upper boundaries
• As long as the category is same, neural network result is exactly the same
• Hence, we can anonymize 𝑥0 by 𝑥0

• Generation from scratch
• Randomly assign -1 or 1 to encodings in each layer

• Not all paths are viable (one has to assign either 1 or -1), take this into consideration by
monitoring upper and lower bounds per feature during layer-by-layer progression.

• Example: In an early layer 0<x<1 was found, new threshold is 2, encoding has to be -1.

• Find resulting upper and lower boundaries
• Sample from those boundaries

LEURN

• LEURN-specific considerations:
• Encoding Layer

• For efficient learning in the backwards pass, we use derivatives of 𝑡𝑎𝑛ℎ(𝑥 − 𝜏)
• For even further efficient learning, in first few epochs we use:

• 𝛼 𝑠𝑖𝑔𝑛 𝑥 − 𝜏 + 1 − 𝛼 𝑡𝑎𝑛ℎ(𝑥 − 𝜏)
• And gradually increase 𝛼 to 1

• Note: model is not monitored for saving until 𝛼 = 1, unless resulting model isn’t a decision
tree.

• Normalizations
• We normalize inputs so that they are in (-1,1) range

• Initialization of weights
• We know encodings will be binary (-1 or 1), and input range is (-1,1), hence we initialize 𝑊𝑖

𝑇

randomly (uniform) between − ൗ1 𝑒0:𝑛
, ൗ1 𝑒0:𝑛

, ensuring outputs are in (-1,1) range and
serves as good thresholds to NN input (which is also in (-1,1) range)

LEURN

• General considerations:
• Handling categorical values

• All categorical values are label encoded

• An embedding layer is learned for each category

• Length of embedding layer is extracted according to formula:
max(2, log2(𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦_𝑛𝑢𝑚𝑏𝑒𝑟))

	Slide 1: LEURN A Generative and Explainable Neural Network for Tabular Data
	Slide 2: Outline
	Slide 3: Motivation : Neural Networks are Decision Trees
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: LEURN
	Slide 7: LEURN
	Slide 8: LEURN
	Slide 9: LEURN
	Slide 10: LEURN
	Slide 11: LEURN

