BenCzechMark-unstable / compile_log_files.py
mfajcik's picture
Upload compile_log_files.py
e60cafc verified
raw
history blame
13.7 kB
# Author: Martin Fajcik
import argparse
import copy
import glob
import hashlib
import os
import json
import re
import jsonlines
from tqdm import tqdm
SUPPORTED_METRICS = [
"avg_mcauroc", # for classification tasks
"exact_match", # for QA tasks
"acc", # for multichoice tasks
"rouge_raw_r2_mid_f_without_bootstrap", # for summarization tasks
"rouge_raw_r2_mid_f", # for summarization tasks, older metric version for back compatibility
"word_perplexity", # for language modeling tasks
]
EXTRA_INFO_RELEASE_KEYS = [
'filtered_resps',
'doc_id',
]
with open("leaderboard/metadata.json", "r") as f:
METADATA = json.load(f)
# TASK MAP
# from promptname to taskname
MAP = {
'benchmark_agree': 'benczechmark_agree',
'benchmark_belebele': 'benczechmark_belebele',
'benchmark_czechnews': 'benczechmark_czechnews',
'benchmark_subjectivity': 'benczechmark_subjectivity',
'benczechmark_snli': 'benczechmark_snli',
'propaganda_argumentace': 'benczechmark_propaganda_argumentace',
'propaganda_fabulace': 'benczechmark_propaganda_fabulace',
'propaganda_nazor': 'benczechmark_propaganda_nazor',
'propaganda_strach': 'benczechmark_propaganda_strach',
'propaganda_zamereni': 'benczechmark_propaganda_zamereni',
'propaganda_demonizace': 'benczechmark_propaganda_demonizace',
'propaganda_lokace': 'benczechmark_propaganda_lokace',
'propaganda_relativizace': 'benczechmark_propaganda_relativizace',
'propaganda_vina': 'benczechmark_propaganda_vina',
'propaganda_zanr': 'benczechmark_propaganda_zanr',
'propaganda_emoce': 'benczechmark_propaganda_emoce',
'propaganda_nalepkovani': 'benczechmark_propaganda_nalepkovani',
'propaganda_rusko': 'benczechmark_propaganda_rusko',
'benczechmark_sentiment_mall': 'benczechmark_sentiment_mall',
'benczechmark_sentiment_fb': 'benczechmark_sentiment_fb',
'benczechmark_sentiment_csfd': 'benczechmark_sentiment_csfd',
'benczechmark_summarization': 'benczechmark_summarization',
'gec': 'benczechmark_grammarerrorcorrection',
'cs_nq_open': 'benczechmark_cs_naturalquestions',
'cs_sqad_open': 'benczechmark_cs_sqad32',
'cs_triviaqa': 'benczechmark_cs_triviaQA',
'csfever': 'benczechmark_csfever_nli',
'ctkfacts': 'benczechmark_ctkfacts_nli',
'cnec_ner': 'benczechmark_cs_ner',
'cdec_ner': 'benczechmark_cs_court_decisions_ner',
'klokan_qa': 'benczechmark_klokan_qa',
'umimeto_biology': 'benczechmark_umimeto_biology',
'umimeto_chemistry': 'benczechmark_umimeto_chemistry',
'umimeto_czech': 'benczechmark_umimeto_czech',
'umimeto_history': 'benczechmark_umimeto_history',
'umimeto_informatics': 'benczechmark_umimeto_informatics',
'umimeto_math': 'benczechmark_umimeto_math',
'umimeto_physics': 'benczechmark_umimeto_physics',
'cermat_czech_open': 'benczechmark_cermat_czech_open',
'cermat_czech_mc': 'benczechmark_cermat_czech_mc',
'cermat_czech_tf': 'benczechmark_cermat_czech_tf',
'cermat_czmath_open': 'benczechmark_cermat_czmath_open',
'cermat_czmath_mc': 'benczechmark_cermat_czmath_mc',
'history_ir': 'benczechmark_history_ir',
'benczechmark_histcorpus': "benczechmark_histcorpus",
'benczechmark_hellaswag': "benczechmark_hellaswag",
'benczechmark_essay': 'benczechmark_essay',
'benczechmark_fiction': 'benczechmark_fiction',
'benczechmark_capek': 'benczechmark_capek',
'benczechmark_correspondence': 'benczechmark_correspondence',
'benczechmark_havlicek': 'benczechmark_havlicek',
'benczechmark_speeches': 'benczechmark_speeches',
'benczechmark_spoken': 'benczechmark_spoken',
'benczechmark_dialect': 'benczechmark_dialect'
}
NO_PROMPT_TASKS = ["benczechmark_histcorpus",
"benczechmark_hellaswag",
"benczechmark_essay",
"benczechmark_fiction",
"benczechmark_capek",
"benczechmark_correspondence",
"benczechmark_havlicek",
"benczechmark_speeches",
"benczechmark_spoken",
"benczechmark_dialect"]
def resolve_taskname(taskname):
if taskname not in MAP:
raise ValueError(f"Taskname {taskname} not found.")
return MAP[taskname]
def rename_keys(d, resolve_taskname):
orig_len = len(d)
for k, v in list(d.items()):
new_key = resolve_taskname(k)
d[new_key] = d.pop(k)
# make sure list length didnt changed
assert len(d) == orig_len
def process_harness_logs(input_folders, output_file):
"""
- Selects best prompt for each task
- Extract data for that prompt, necessary for targe/mnt/data/ifajcik/micromamba/envs/envs/lmharnest metrics
"""
def expand_input_folders(input_folders):
# Check if input_folders is a wildcard pattern
if '*' in input_folders or '?' in input_folders:
# Expand the wildcard into a list of matching directories
matching_directories = [f for f in glob.glob(input_folders) if os.path.isdir(f)]
return matching_directories
else:
# If it's not a wildcard, return the input as a single-item list if it's a valid directory
if os.path.isdir(input_folders):
return [input_folders]
else:
return []
input_folders = expand_input_folders(input_folders)
per_task_results = {}
metric_per_task = {}
predictions = {}
all_harness_results = dict()
for input_folder in tqdm(input_folders, desc="Loading files"):
# read all files in input_folder
# consider first folder within this folder
input_folder = os.path.join(input_folder, os.listdir(input_folder)[0])
# find file which starts with results... prefix in the input_folder
result_file = [f for f in os.listdir(input_folder) if f.startswith("results")][0]
with open(os.path.join(input_folder, result_file), "r") as f:
harness_results = json.load(f)
all_harness_results[list(harness_results['results'].values())[0]['alias']] = harness_results
current_multipleprompt_tasknames = []
for name, result in harness_results['results'].items():
if name in NO_PROMPT_TASKS:
# not prompts
taskname = name
# process metric names
for k, v in copy.deepcopy(result).items():
if "," in k:
name, _ = k.split(",")
del result[k]
result[name] = v
per_task_results[taskname] = result
if result['alias'].strip().startswith('- prompt-'):
# process taskname
taskname = name[:-1]
if taskname.endswith("_"):
taskname = taskname[:-1]
# process metric names
for k, v in copy.deepcopy(result).items():
if "," in k:
name, key = k.split(",")
del result[k]
result[name] = v
if taskname not in per_task_results:
per_task_results[taskname] = [result]
current_multipleprompt_tasknames.append(taskname)
else:
per_task_results[taskname].append(result)
# get best result according to metric priority given in SUPPORTED_METRICS list
for taskname, results in per_task_results.items():
if not taskname in current_multipleprompt_tasknames:
continue
best_result = None
target_metric = None
for m in SUPPORTED_METRICS:
if m in results[0]:
target_metric = m
break
if target_metric is None:
raise ValueError(f"No supported metric found in {taskname}")
metric_per_task[taskname] = target_metric
all_measured_results = []
for result in results:
all_measured_results.append(result[target_metric])
if best_result is None:
best_result = result
else:
if result[target_metric] > best_result[target_metric]:
best_result = result
# Compute max-centered variance
max_value = best_result[target_metric]
squared_diffs = [(x * 100.0 - max_value * 100.0) ** 2 for x in all_measured_results]
max_centered_variance = sum(squared_diffs) / (len(squared_diffs) - 1)
best_result['max_centered_variance'] = max_centered_variance
per_task_results[taskname] = best_result
for file in os.listdir(input_folder):
if file == result_file or not file.startswith("samples") or not file.endswith(".jsonl"):
continue
for taskname in per_task_results.keys():
if taskname in file:
print(f"Processing {os.path.join(input_folder, file)} for {taskname}")
# check this file corresponds to same prompt
winning_prompt = per_task_results[taskname]['alias'][-1]
if taskname in NO_PROMPT_TASKS:
current_prompt = "-1"
else:
try:
current_prompt = re.search(rf"{taskname}_(\d+)_", file).group(1)
except AttributeError:
raise ValueError(f"Prompt not found in {file}")
if winning_prompt == current_prompt or taskname in NO_PROMPT_TASKS:
# load file contents
predictions[taskname] = list(jsonlines.open(os.path.join(input_folder, file)))
# only keep data necessary for metrics
for prediction in predictions[taskname]:
for key in list(prediction.keys()):
if key not in SUPPORTED_METRICS + EXTRA_INFO_RELEASE_KEYS:
del prediction[key]
# rename keys (tasknames) using resolve_tasknames:
rename_keys(predictions, resolve_taskname)
rename_keys(per_task_results, resolve_taskname)
# assert keys in predictions and results are the same
# assert set(predictions.keys()) == set(per_task_results.keys())
if not set(predictions.keys()) == set(per_task_results.keys()):
# print missing keys
print("Missing keys in predictions:")
print(set(predictions.keys()) - set(per_task_results.keys()))
# print extra keys
print("Extra keys in predictions:")
print(set(per_task_results.keys()) - set(predictions.keys()))
raise ValueError("Keys in predictions and results are not the same")
aggregated_predictions = dict()
aggregated_predictions["predictions"] = predictions
aggregated_predictions["results"] = per_task_results
aggregated_predictions["metadata"] = {
'git_hash': harness_results['git_hash'],
'transformers_version': harness_results['transformers_version'],
'tokenizer_pad_token': harness_results['tokenizer_pad_token'],
'tokenizer_eos_token': harness_results['tokenizer_eos_token'],
'tokenizer_bos_token': harness_results['tokenizer_bos_token'],
'eot_token_id': harness_results['eot_token_id'],
'max_length': harness_results['max_length'],
'task_hashes': harness_results['task_hashes'],
'model_source': harness_results['model_source'],
'model_name': harness_results['model_name'],
'model_name_sanitized': harness_results['model_name_sanitized'],
'system_instruction': harness_results['system_instruction'],
'system_instruction_sha': harness_results['system_instruction_sha'],
'fewshot_as_multiturn': harness_results['fewshot_as_multiturn'],
'chat_template': harness_results['chat_template'],
'chat_template_sha': harness_results['chat_template_sha'],
'total_evaluation_time_seconds': {k:v['total_evaluation_time_seconds'] for k,v in all_harness_results.items()},
'n-shot': all_harness_results['CTKFacts NLI']['n-shot']['ctkfacts_0']
}
# make sure all tasks are present
all_tasks = set(METADATA["tasks"].keys())
all_expected_tasks = set(per_task_results.keys())
all_missing_tasks = all_tasks - all_expected_tasks
all_extra_tasks = all_expected_tasks - all_tasks
if len(all_missing_tasks) > 0:
EOLN = "\n"
# print(f"Missing tasks: {EOLN.join(all_missing_tasks)}")
raise Exception(f"Missing tasks: {EOLN.join(all_missing_tasks)}") # TODO: uncomment
if len(all_extra_tasks) > 0:
EOLN = "\n"
raise Exception(f"Extra tasks: {EOLN.join(all_extra_tasks)}")
with open(output_file, "w") as f:
json.dump(aggregated_predictions, f)
print("Success!")
print("Output saved to", output_file)
def main():
parser = argparse.ArgumentParser(
description="Process outputs of lm harness into minimum compatible format necessary for leaderboard submission.")
parser.add_argument("-i", "-f", "--input_folder", "--folder",
help="Folder with unprocessed results from lm harness.", required=True)
parser.add_argument("-o", "--output_file", help="File to save processed results.", required=True)
args = parser.parse_args()
process_harness_logs(args.input_folder, args.output_file)
if __name__ == "__main__":
main()