# Copyright (c) Facebook, Inc. and its affiliates. """ This file contains primitives for multi-gpu communication. This is useful when doing distributed training. """ import functools import logging import numpy as np import pickle import torch import torch.distributed as dist import diffdist from torch import nn from torch.nn import functional as F _LOCAL_PROCESS_GROUP = None """ A torch process group which only includes processes that on the same machine as the current process. This variable is set when processes are spawned by `launch()` in "engine/launch.py". """ def get_world_size() -> int: if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size() def get_rank() -> int: if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() def get_local_rank() -> int: """ Returns: The rank of the current process within the local (per-machine) process group. """ if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 assert _LOCAL_PROCESS_GROUP is not None return dist.get_rank(group=_LOCAL_PROCESS_GROUP) def get_local_size() -> int: """ Returns: The size of the per-machine process group, i.e. the number of processes per machine. """ if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size(group=_LOCAL_PROCESS_GROUP) def is_main_process() -> bool: return get_rank() == 0 def synchronize(): """ Helper function to synchronize (barrier) among all processes when using distributed training """ if not dist.is_available(): return if not dist.is_initialized(): return world_size = dist.get_world_size() if world_size == 1: return dist.barrier() @functools.lru_cache() def _get_global_gloo_group(): """ Return a process group based on gloo backend, containing all the ranks The result is cached. """ if dist.get_backend() == "nccl": return dist.new_group(backend="gloo") else: return dist.group.WORLD def _serialize_to_tensor(data, group): backend = dist.get_backend(group) assert backend in ["gloo", "nccl"] device = torch.device("cpu" if backend == "gloo" else "cuda") buffer = pickle.dumps(data) if len(buffer) > 1024 ** 3: logger = logging.getLogger(__name__) logger.warning( "Rank {} trying to all-gather {:.2f} GB of data on device {}".format( get_rank(), len(buffer) / (1024 ** 3), device ) ) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to(device=device) return tensor def _pad_to_largest_tensor(tensor, group): """ Returns: list[int]: size of the tensor, on each rank Tensor: padded tensor that has the max size """ world_size = dist.get_world_size(group=group) assert ( world_size >= 1 ), "comm.gather/all_gather must be called from ranks within the given group!" local_size = torch.tensor([tensor.numel()], dtype=torch.int64, device=tensor.device) size_list = [ torch.zeros([1], dtype=torch.int64, device=tensor.device) for _ in range(world_size) ] dist.all_gather(size_list, local_size, group=group) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes if local_size != max_size: padding = torch.zeros((max_size - local_size,), dtype=torch.uint8, device=tensor.device) tensor = torch.cat((tensor, padding), dim=0) return size_list, tensor def all_gather(data, group=None): """ Run all_gather on arbitrary picklable data (not necessarily tensors). Args: data: any picklable object group: a torch process group. By default, will use a group which contains all ranks on gloo backend. Returns: list[data]: list of data gathered from each rank """ if get_world_size() == 1: return [data] if group is None: group = _get_global_gloo_group() if dist.get_world_size(group) == 1: return [data] tensor = _serialize_to_tensor(data, group) size_list, tensor = _pad_to_largest_tensor(tensor, group) max_size = max(size_list) # receiving Tensor from all ranks tensor_list = [ torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list ] dist.all_gather(tensor_list, tensor, group=group) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def gather(data, dst=0, group=None): """ Run gather on arbitrary picklable data (not necessarily tensors). Args: data: any picklable object dst (int): destination rank group: a torch process group. By default, will use a group which contains all ranks on gloo backend. Returns: list[data]: on dst, a list of data gathered from each rank. Otherwise, an empty list. """ if get_world_size() == 1: return [data] if group is None: group = _get_global_gloo_group() if dist.get_world_size(group=group) == 1: return [data] rank = dist.get_rank(group=group) tensor = _serialize_to_tensor(data, group) size_list, tensor = _pad_to_largest_tensor(tensor, group) # receiving Tensor from all ranks if rank == dst: max_size = max(size_list) tensor_list = [ torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list ] dist.gather(tensor, tensor_list, dst=dst, group=group) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list else: dist.gather(tensor, [], dst=dst, group=group) return [] def shared_random_seed(): """ Returns: int: a random number that is the same across all workers. If workers need a shared RNG, they can use this shared seed to create one. All workers must call this function, otherwise it will deadlock. """ ints = np.random.randint(2 ** 31) all_ints = all_gather(ints) return all_ints[0] def reduce_dict(input_dict, average=True): """ Reduce the values in the dictionary from all processes so that process with rank 0 has the reduced results. Args: input_dict (dict): inputs to be reduced. All the values must be scalar CUDA Tensor. average (bool): whether to do average or sum Returns: a dict with the same keys as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.reduce(values, dst=0) if dist.get_rank() == 0 and average: # only main process gets accumulated, so only divide by # world_size in this case values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict def gather_tensors(tensor, method=""): """ Performs all_gather operation on the provided tensors. *** Warning ***: torch.distributed.all_gather has no gradient. """ world_size = get_world_size() rank = get_rank() if world_size <= 1: return tensor, tensor.shape[0] batch_size = torch.tensor(tensor.shape[0], device=tensor.device) batch_size_full = [torch.zeros_like(batch_size) for _ in range(world_size)] dist.all_gather(batch_size_full, batch_size) # cutting all data to min batch size across all GPUs min_bs = min([bs.item() for bs in batch_size_full]) if min_bs < batch_size: tensor = tensor[:min_bs] if "svd" in method: # curently, svd does not support half-precision # convert tenosr back to full-precision with torch.cuda.amp.autocast(enabled=False): U, Sig, V = torch.svd_lowrank(tensor.cpu(), q=int(method.split("_")[1])) # gather U Us = _gather_tensor(U.to(tensor.device), world_size) # N x B x LR Sigs = _gather_tensor(torch.diag(Sig.to(tensor.device)), world_size) # N x LR x LR Vs = _gather_tensor(V.to(tensor.device).T, world_size) # N x LR x D # perform batch mm # outputs = [] # for k in range(Us.shape[0]): # temp = torch.mm(Us[k], Sigs[k]) # B x LR # output = torch.mm(temp, Vs[k]) # B x D # outputs.append(output) # outputs[rank] = tensor # output = torch.cat(outputs, 0) output = torch.bmm(torch.bmm(Us, Sigs), Vs) output[rank] = tensor output = output.view(-1, output.shape[-1]) elif "pca" in method: raise NotImplementedError else: tensors_gather = [ torch.ones_like(tensor) for _ in range(world_size) ] # dist.all_gather(tensors_gather, tensor, async_op=False) # need to do this to restore propagation of the gradients # tensors_gather[rank] = tensor tensors_gather = diffdist.functional.all_gather(tensors_gather, tensor) output = torch.cat(tensors_gather, dim=0) return output, min_bs class SoftTargetCrossEntropy(nn.Module): def __init__(self): super(SoftTargetCrossEntropy, self).__init__() def forward(self, x, target, dim=-1): loss = torch.sum(-target * F.log_softmax(x, dim=dim), dim=dim) / (torch.sum(target, dim=dim) + 1e-6) return loss.mean() class MILCrossEntropy(nn.Module): """ Multi-instance learning loss """ def __init__(self): super(MILCrossEntropy, self).__init__() def forward(self, x, target, dim=-1, weights=None, avg_positives=False): # for numerical stability logits_max, _ = torch.max(x, dim=1, keepdim=True) logits = x - logits_max.detach() exp_logits = torch.exp(logits) # get non-zero entries off-diagonal # identity = torch.eye(target.shape[0]).type_as(target) # laplacian = 1 - (target - identity) probs = exp_logits / (exp_logits).sum(dim=dim, keepdim=True) if avg_positives: # average the logits over positive targets loss = -torch.log(torch.sum(target * probs, dim=dim) / (torch.sum(target, dim=dim) + 1e-6)) else: # sum the logits over positive targets loss = -torch.log(torch.sum(target * probs, dim=dim)) if weights is not None: return (loss * weights).mean() return loss.mean()