import gzip import html import os from functools import lru_cache import ftfy import regex as re import torch import numpy as np from typing import Union, List # https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py @lru_cache() def default_bpe(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'' for v in vocab] self.vocab = vocab for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + ( token[-1] + '',) pairs = get_pairs(word) if not pairs: return token+'' while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('', ' ') return text # https://github.com/openai/CLIP/blob/main/clip/clip.py #_tokenizer = SimpleTokenizer() def tokenize(texts: Union[str, List[str]], context_length: int = 77): if isinstance(texts, str): texts = [texts] sot_token = _tokenizer.encoder["<|startoftext|>"] eot_token = _tokenizer.encoder["<|endoftext|>"] all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") result[i, :len(tokens)] = torch.tensor(tokens) return result # prompt_engineering.py def get_prompt_templates(): # prompt_templates = [ # 'There is a {} in the scene.', # 'There is the {} in the scene.', # 'a photo of a {} in the scene.', # 'a photo of the {} in the scene.', # 'a photo of one {} in the scene.', # 'itap of a {}.', # 'itap of my {}.', # itap: I took a picture of # 'itap of the {}.', # 'a photo of a {}.', # 'a photo of my {}.', # 'a photo of the {}.', # 'a photo of one {}.', # 'a photo of many {}.', # 'a good photo of a {}.', # 'a good photo of the {}.', # 'a bad photo of a {}.', # 'a bad photo of the {}.', # 'a photo of a nice {}.', # 'a photo of the nice {}.', # 'a photo of a cool {}.', # 'a photo of the cool {}.', # 'a photo of a weird {}.', # 'a photo of the weird {}.', # 'a photo of a small {}.', # 'a photo of the small {}.', # 'a photo of a large {}.', # 'a photo of the large {}.', # 'a photo of a clean {}.', # 'a photo of the clean {}.', # 'a photo of a dirty {}.', # 'a photo of the dirty {}.', # 'a bright photo of a {}.', # 'a bright photo of the {}.', # 'a dark photo of a {}.', # 'a dark photo of the {}.', # 'a photo of a hard to see {}.', # 'a photo of the hard to see {}.', # 'a low resolution photo of a {}.', # 'a low resolution photo of the {}.', # 'a cropped photo of a {}.', # 'a cropped photo of the {}.', # 'a close-up photo of a {}.', # 'a close-up photo of the {}.', # 'a jpeg corrupted photo of a {}.', # 'a jpeg corrupted photo of the {}.', # 'a blurry photo of a {}.', # 'a blurry photo of the {}.', # 'a pixelated photo of a {}.', # 'a pixelated photo of the {}.', # 'a black and white photo of the {}.', # 'a black and white photo of a {}.', # 'a plastic {}.', # 'the plastic {}.', # 'a toy {}.', # 'the toy {}.', # 'a plushie {}.', # 'the plushie {}.', # 'a cartoon {}.', # 'the cartoon {}.', # 'an embroidered {}.', # 'the embroidered {}.', # 'a painting of the {}.', # 'a painting of a {}.', # ] prompt_templates = ['{}.', 'a photo of the large {}.', 'a photo of the small {}.', 'a bad photo of the {}.', 'itap of the {}.', 'a origami {}.', 'a {} in a video game.', 'art of the {}.'] return prompt_templates def prompt_engineering(classnames, template=""): return template.replace('{}', classnames.replace(',', '').replace('+', ' ')) # clip_img_tsv.py def convert_example_to_features_bpe(text, tokenizer, sot_token, eot_token, context_length=77): """ Convert a raw sample (pair of sentences as tokenized strings) into a proper training sample. :param tokenizer: Tokenizer :return: List, a list containing token id, padded by 0 """ assert isinstance(text, str) input_ids = [sot_token] + tokenizer.encode(text) + [eot_token] if len(input_ids) > context_length: input_ids = input_ids[:context_length] input_ids = np.array(input_ids) pad_input_ids = np.zeros(context_length) pad_input_ids[:input_ids.shape[0]] = input_ids return pad_input_ids def pre_tokenize(class_names): """ pre-tokenize class names :param class_names: List, a list of class names :param tokenizer: Tokenizer, SimpleTokenizer() :return: Tensor, containing all prompts for all classes, [#cls, #prompts, context_length] """ # tokenizer tokenizer = SimpleTokenizer() sot_token = tokenizer.encoder["<|startoftext|>"] eot_token = tokenizer.encoder["<|endoftext|>"] # prompt engineering prompt_templates = get_prompt_templates() input_ids_all = [] for k in range(len(class_names)): v = class_names[k] if isinstance(v, str): vs = [v] elif isinstance(v, list): vs = v t1s = [] for v in vs: for pt in prompt_templates: t1s.append(prompt_engineering(v, template=pt)) input_ids = [] for t1 in t1s: this_input_ids = convert_example_to_features_bpe(t1, tokenizer, sot_token, eot_token) input_ids.append(torch.tensor(this_input_ids, dtype=torch.long)) input_ids_all.append(torch.stack(input_ids, 0)) input_ids_all_classes = torch.stack(input_ids_all, 0) return input_ids_all_classes if __name__ == "__main__": flatten_input_ids = pre_tokenize()