import copy import torch import torch.nn as nn from typing import Optional def _get_clones(mod, n): return nn.ModuleList([copy.deepcopy(mod) for _ in range(n)]) class SPOTERTransformerDecoderLayer(nn.TransformerDecoderLayer): """ Edited TransformerDecoderLayer implementation omitting the redundant self-attention operation as opposed to the standard implementation. """ def __init__(self, d_model, nhead, dim_feedforward, dropout, activation): super(SPOTERTransformerDecoderLayer, self).__init__(d_model, nhead, dim_feedforward, dropout, activation) del self.self_attn def forward(self, tgt: torch.Tensor, memory: torch.Tensor, tgt_mask: Optional[torch.Tensor] = None, memory_mask: Optional[torch.Tensor] = None, tgt_key_padding_mask: Optional[torch.Tensor] = None, memory_key_padding_mask: Optional[torch.Tensor] = None) -> torch.Tensor: tgt = tgt + self.dropout1(tgt) tgt = self.norm1(tgt) tgt2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0] tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout3(tgt2) tgt = self.norm3(tgt) return tgt class SPOTER(nn.Module): """ Implementation of the SPOTER (Sign POse-based TransformER) architecture for sign language recognition from sequence of skeletal data. """ def __init__(self, num_classes, hidden_dim=55): super().__init__() self.row_embed = nn.Parameter(torch.rand(50, hidden_dim)) self.pos = nn.Parameter(torch.cat([self.row_embed[0].unsqueeze(0).repeat(1, 1, 1)], dim=-1).flatten(0, 1).unsqueeze(0)) self.class_query = nn.Parameter(torch.rand(1, hidden_dim)) self.transformer = nn.Transformer(hidden_dim, 9, 6, 6) self.linear_class = nn.Linear(hidden_dim, num_classes) # Deactivate the initial attention decoder mechanism custom_decoder_layer = SPOTERTransformerDecoderLayer(self.transformer.d_model, self.transformer.nhead, 2048, 0.1, "relu") self.transformer.decoder.layers = _get_clones(custom_decoder_layer, self.transformer.decoder.num_layers) def forward(self, inputs): h = torch.unsqueeze(inputs.flatten(start_dim=1), 1).float() h = self.transformer(self.pos + h, self.class_query.unsqueeze(0)).transpose(0, 1) res = self.linear_class(h) return res if __name__ == "__main__": pass