from transformers.pipelines.image_segmentation import Predictions from transformers import DistilBertForSequenceClassification, DistilBertTokenizer import unidecode, re, unicodedata from bs4 import BeautifulSoup from urllib.request import urlopen from urllib.parse import urlparse from sklearn.metrics import confusion_matrix, accuracy_score import torch.nn.functional as F import gradio as gr import torch def check_by_title(title): model = DistilBertForSequenceClassification.from_pretrained(".") tokenizer = DistilBertTokenizer.from_pretrained(".") test_encodings = tokenizer.encode_plus( title, truncation=True, padding=True, max_length=512, return_tensors="pt" ) model1=[] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") test_input_ids = test_encodings["input_ids"].to(device) test_attention_mask = test_encodings["attention_mask"].to(device) with torch.no_grad(): model1= model.to(device) model1.eval() outputs= model1( test_input_ids, attention_mask=test_attention_mask) logits = outputs.logits predicted_labels = torch.argmax(logits, dim=1) probabilities = F.softmax(logits, dim=1) confidence_score_title = torch.max(probabilities, dim=1).values.tolist() predicted_labels = torch.argmax(outputs.logits, dim=1) label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:false predicted_label_title = label_mapping[predicted_labels.item()] return predicted_label_title, confidence_score_title def check_by_content(normalized_content_with_style): test_encodings = tokenizer.encode_plus( normalized_content_with_style, truncation=True, padding=True, max_length=512, return_tensors="pt" ) model1=[] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") test_input_ids = test_encodings["input_ids"].to(device) test_attention_mask = test_encodings["attention_mask"].to(device) with torch.no_grad(): model1= model.to(device) model1.eval() outputs= model1( test_input_ids, attention_mask=test_attention_mask) logits = outputs.logits predicted_labels = torch.argmax(logits, dim=1) probabilities = F.softmax(logits, dim=1) confidence_scores_content = torch.max(probabilities, dim=1).values.tolist() label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:false predicted_label_content = label_mapping[predicted_labels.item()] return predicted_label_content, confidence_scores_content def predict_2(title, normalized_content_with_style): predicted_label_title, confidence_score_title = check_by_title(title) predicted_label_content, confidence_scores_content = check_by_content(normalized_content_with_style) return predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content demo = gr.Interface( fn=predict_2, inputs=[ gr.inputs.Textbox(label="Title", placeholder="Enter title"), gr.inputs.Textbox(label="Content", placeholder="enter Content"), ], outputs= [ gr.outputs.Textbox(label="Title_prediction"), gr.outputs.Textbox(label="Title_confidence_score"), gr.outputs.Textbox(label="Content_prediction"), gr.outputs.Textbox(label="content_confidence_score"), #gr.outputs.Textbox(label="Description").style(show_copy_button=True) ], ) demo.launch()