from transformers.pipelines.image_segmentation import Predictions import unidecode, re, unicodedata from bs4 import BeautifulSoup from urllib.request import urlopen from urllib.parse import urlparse from sklearn.metrics import confusion_matrix, accuracy_score import torch.nn.functional as F import gradio as gr def check_by_url(txt_url): #txt_url = "https://www.c-sharpcorner.com/article/how-to-add-multimedia-content-with-html/default.txt" parsed_url = urlparse(txt_url) url = f"{parsed_url.scheme}://{parsed_url.netloc}{parsed_url.path.rsplit('/', 1)[0]}/" print(url) new_data =[] page = urlopen(url=url).read().decode("utf-8") soup = BeautifulSoup(page, 'html.parser') title = soup.find('title').get_text() css_class_to_remove = "dp-highlighter" # Replace with the CSS class you want to remove #Find
tags without style content_without_style = "" p_tags_without_style = soup.find_all('p', style=False) for p_tag in p_tags_without_style: p_content = re.sub(r'\n', '', p_tag.get_text()) content_without_style += p_content # Replace Unicode characters in the content and remove duplicates normalized_content_with_style = re.sub(r'\s+', ' ', content_with_style) # Remove extra spaces normalized_content_with_style = normalized_content_with_style.replace('\r', '') # Replace '\r' characters normalized_content_with_style = unicodedata.normalize('NFKD', normalized_content_with_style) normalized_content_with_style = unidecode.unidecode(normalized_content_with_style) normalized_content_without_style = re.sub(r'\s+', ' ', content_without_style) # Remove extra spaces normalized_content_without_style = normalized_content_without_style.replace('\r', '') # Replace '\r' characters normalized_content_without_style = unicodedata.normalize('NFKD', normalized_content_without_style) normalized_content_without_style = unidecode.unidecode(normalized_content_without_style) normalized_content_with_style += normalized_content_without_style new_data = {"title": title, "content": normalized_content_with_style} model = DistilBertForSequenceClassification.from_pretrained(Save_model) tokenizer = DistilBertTokenizer.from_pretrained(Save_model) test_encodings = tokenizer.encode_plus( title, truncation=True, padding=True, max_length=512, return_tensors="pt" ) model1=[] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") test_input_ids = test_encodings["input_ids"].to(device) test_attention_mask = test_encodings["attention_mask"].to(device) with torch.no_grad(): model1= model.to(device) model1.eval() outputs= model1( test_input_ids, attention_mask=test_attention_mask) logits = outputs.logits predicted_labels = torch.argmax(logits, dim=1) probabilities = F.softmax(logits, dim=1) confidence_score_title = torch.max(probabilities, dim=1).values.tolist() predicted_labels = torch.argmax(outputs.logits, dim=1) label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:false predicted_label_title = label_mapping[predicted_labels.item()] test_encodings = tokenizer.encode_plus( normalized_content_with_style, truncation=True, padding=True, max_length=512, return_tensors="pt" ) model1=[] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") test_input_ids = test_encodings["input_ids"].to(device) test_attention_mask = test_encodings["attention_mask"].to(device) with torch.no_grad(): model1= model.to(device) model1.eval() outputs= model1( test_input_ids, attention_mask=test_attention_mask) logits = outputs.logits predicted_labels = torch.argmax(logits, dim=1) probabilities = F.softmax(logits, dim=1) confidence_scores_content = torch.max(probabilities, dim=1).values.tolist() label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:false predicted_label_content = label_mapping[predicted_labels.item()] return predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content, new_data def predict_2( url): predicted_label_title, confidence_score_title,predicted_label_content, confidence_scores_content, new_data = check_by_url(url) return predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content, new_data demo = gr.Interface( fn=predict_2, inputs= [ gr.inputs.Textbox(label="Enter URL"), ], outputs= [ gr.outputs.Textbox(label="Title_prediction"), gr.outputs.Textbox(label="Title_confidence_score"), gr.outputs.Textbox(label="Content_prediction"), gr.outputs.Textbox(label="content_confidence_score"), gr.outputs.Textbox(label="new_data").style(show_copy_button=True) ], ) demo.launch()